cādence[®]

SystemSI – Parallel Bus Analysis Tutorial

Product Version 16.6 July 2014 © 2014 Cadence Design Systems, Inc. All rights reserved.

Cadence Design Systems, Inc. (Cadence), 2655 Seely Ave., San Jose, CA 95134, USA.

Open SystemC, Open SystemC Initiative, OSCI, SystemC, and SystemC Initiative are trademarks or registered trademarks of Open SystemC Initiative, Inc. in the United States and other countries and are used with permission.

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. contained in this document are attributed to Cadence with the appropriate symbol. For queries regarding Cadence's trademarks, contact the corporate legal department at the address shown above or call 800.862.4522. All other trademarks are the property of their respective holders.

Restricted Permission: This publication is protected by copyright law and international treaties and contains trade secrets and proprietary information owned by Cadence. Unauthorized reproduction or distribution of this publication, or any portion of it, may result in civil and criminal penalties. Except as specified in this permission statement, this publication may not be copied, reproduced, modified, published, uploaded, posted, transmitted, or distributed in any way, without prior written permission from Cadence. Unless otherwise agreed to by Cadence in writing, this statement grants Cadence customers permission to print one (1) hard copy of this publication subject to the following conditions:

- 1. The publication may be used only in accordance with a written agreement between Cadence and its customer.
- 2. The publication may not be modified in any way.
- Any authorized copy of the publication or portion thereof must include all original copyright, trademark, and other proprietary notices and this permission statement.
- 4. The information contained in this document cannot be used in the development of like products or software, whether for internal or external use, and shall not be used for the benefit of any other party, whether or not for consideration.

Disclaimer: Information in this publication is subject to change without notice and does not represent a commitment on the part of Cadence. Except as may be explicitly set forth in such agreement, Cadence does not make, and expressly disclaims, any representations or warranties as to the completeness, accuracy or usefulness of the information contained in this document. Cadence does not warrant that use of such information will not infringe any third party rights, nor does Cadence assume any liability for damages or costs of any kind that may result from use of such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth in FAR52.227-14 and DFAR252.227-7013 et seq. or its successor.

Table of Contents

1	Paral	lel Bus Analysis Tutorial	6
	1.1	Overview	
	1.2	Tutorial Description	6
2	Quicl	s Start	7
	2.1	Overview	7
	2.2	Open a Template	7
	2.3	Editing Components	9
	2.3.1	PCB Block	9
	2.3.2	Controller / Memory Block	
	2.3	.2.1 MCP Generation for Controller and Memory IBIS Blocks	. 13
	2.3.3	EBD Block	
		.3.1 EBD File	
	2.3	.3.2 Using EBD Models in System SI	
	2.3.4	S Parameter Block	
		.4.1 Add S Parameter Block	
		.4.2 Load S Parameter File	
		.4.3 Extract the BBS Model	
		.4.4 Load the BBS Model	
		.4.5 Switch the Models	
	2.3.5	VRM Block	
	2.4	Adding New Components	
	2.5	Setting up Probe Points	
	2.6	Setting up the Simulation	
	2.7	Running the Simulation	
3	2.8	Custom Templates	
3	3.1	File Augmentation	
	3.2	Overview IBIS Resources	
	3.3	Bus Definition	
	3.4	Pin Mapping	
	3.5	IBIS File GUI	
	3.5.1	Open a Template Project	
	3.5.2	Editing the Controller IBIS	
	3.5.3	Pin Mapping	
	3.5.4	Supported IBIS Keywords	
4		n Entry	
	4.1	Overview	
	4.2	Parallel Bus Analysis Templates	
	4.2.1	Rank Definition	
	4.3	Parallel Bus Analysis Wizard	. 46
5	Assig	ning Device Models	
	5.1	Overview	
	5.2	Design Files	. 51
	5.3	Controller Model	. 52
	5.3.1	Assign the Controller IBIS Model	. 52
	5.3.2	Controller Bus Definition	. 54
	5.4	Adding Memory Device Models	
6	Inter	connect Models	
	6.1	Introduction	. 60
	6.2	Design Files	
	6.3	PCB Model Generation	C 0

	6.3.1	PCB Block Editing6	51
	6.3	.1.1 Layout Extraction Tab	51
	6.3.2	PowerSI Model Extraction	53
	6.3.3	Assign PowerSI Model	56
	6.4	Package Models	
	6.4.1	Controller and Memory Package Model	59
7	Addiı	ng a VRM7	70
	7.1	Overview	70
	7.2	Design Files	70
		Define the VRM Block	
8		ecting the System7	
	8.1	Introduction	
	8.1.1	Example Files7	
		Connection Definitions	
	8.2.1	Memory Component	
	8.2.2	Connecting Controller Component	79
	8.2.3	Editing the VRM Block	
~	8.2.4	Unmapped Pins in MCP Editor	
9		lation	
	9.1	Introduction	
	9.2	Tutorial Files	
	9.3	Analysis Options	
	9.4 9.5	Simulator	
		Simulation Configuration	
		.1.1 Eye Distribution Methods	
		1.1.2 BER_Eyes	
		Stimulus Definition and Model Selection	
	9.7.1	Controller Setup	
	9.7.1	Memory Setup	
	9.7.2	Timing Budget	
		.3.1 Timing Parameters Definition	
		.3.2 Stimulus Offset Options	
		Restore Defaults	
		Simulation	
		Explore Sweep Manager	
		.1.1 Sweep Type	
	9.9	.1.2 Sweep List	
		.1.3 Total Iterations	
	9.9	.1.4 Results)6
	9.9	.1.5 Grouping Parameters)7
	9.9	.1.6 Model Sweep)8
	9.9.2	Initial Simulation10	
	9.9.3	Running Multiple Sweep11	11
	9.9.4	Data Presentation / 2D Curve Viewer11	
	9.9.5	Simulation Directory11	15
	9.10	Additional Exercises	
	9.10.1	•	
	9.10.2		
	9.10.3	e	
	9.10.4		
	9.10.5	6	
		0.5.1 Memory Bus in Write Mode	
	9.1	0.5.2 Memory Bus in Read Mode12	25

	9.10.6	Terminate Unconnected Nodes	
	9.10.7	Frequency Response	
	9.10.8	S-Parameter Extraction	
	9.10.8	.1 Single-ended Mode	130
	9.10.8	.2 Differential Mode	
	9.10.9	S-Parameter View	134
	9.10.10	Result Browser and 2D Curve Presentation	136
	9.10.1	0.1 Result Browser	136
	9.10.1	0.2 Curve Pane Context Menu	137
	9.10.11	General Options	138
10	DDR Me	easurement Report	
-		roduction	
1	0.2 Tu	torial Files	140
1		nulation Results	
1		OR Report Settings	
1		tup and Hold Derating Tables	
1		DR4 Threshold	
1		DDR2 and LPDDR3 Threshold Application	
1		nerate the Report	
1		port Contents	
	10.9.1	Table of Contents	
	10.9.2	Section 1 – General Information	
	10.9.3	Section 2 – Simulation Setup	
	10.9.4	Section 3 – DDR Measurement Setup	
	10.9.5	Section 4 – Results	
	10.9.5		
	10.9.5		
	10.9.5	8 1	
	10.9.5		
	10.9.5		
	10.9.5		
	10.9.5	5 1	
	10.9.6	Appendix	
11	•	I with Other Tools	
		stemSI Integration with Allegro Signal Explorer (SigXplorer)	
		stemSI Integration with TimingDesigner	
1	1.3 Au	to Archive SSI Project	177

A APPENDIX: BATCH MODE SUPPORT	
--------------------------------	--

182

1 Parallel Bus Analysis Tutorial

1.1 Overview

Sigrity **SystemSI – Parallel Bus Analysis** is a system-level signal integrity (SI) analysis tool, focused on high speed parallel interfaces. It is integrated with Sigrity patented board and package modeling tools including PowerSI for extraction of accurate hardware interconnect models including real power distribution networks.

Parallel Bus Analysis supports HSPICE transistor-level and IBIS behavioral I/O models, including power-aware constructs from BIRD95 and BIRD98, to enable simulations with non-ideal power conditions. Interconnects like connectors and cables can be included with S-parameter data, or SPICE compatible circuit models.

Synchronous design performance metrics including eye diagrams with detailed timing measurements are available as outputs.

1.2 Tutorial Description

This tutorial covers the typical steps a user will go through to enter, edit and simulate a parallel bus interface.

- Chapter 2 has a **Quick Start Guide** that uses one of the simulation templates to introduce the **User Interface** and **Design Flow** for **Parallel Bus Analysis**.
- Chapter 3 provides reference information including IBIS file details.
- Chapters 4 through 9 provide a step-by-step overview on how to use **Parallel Bus Analysis** for a DDR3 system.
- Chapter 10 has advanced topics.

Files can be classified into two types: Templates and Samples.

- The template files for Chapter 2 and 3 are easily accessible from the GUI, through the File menu.
- The Sample files for Chapter 4 through 9 are in the \Samples\SystemSI\Parallel Bus Analysis\Tutorial directory, typically located here:

<INSTALL_DIR>\SpeedXP\Samples\SystemSI\Parallel Bus Analysis\Tutorial

Note: Instead of updating the files in the sample directory, it is recommended that you copy these files to your working directory and work on them.

This document does not go into detail on theory. Please refer to **Application Notes** for additional documentation.

Contact Cadence support at <u>si-support@cadence.com</u> for more focused application assistance.

The example used in this tutorial is a simple DDR3 memory bus, including controller, PCB and DRAM devices.

Key topics that will be covered can be grouped into 3 broad categories: model creation, design entry, and simulation.

Each chapter is written to be a standalone module for users to follow for specific task-focused activity.

Please feedback any problems or issues found with this document to Cadence support.

2 Quick Start

2.1 Overview

As an introduction to **Parallel Bus Analysis**, we will start by looking at one of the templates that are installed with the tool. This will allow us to look at the GUI, design entry commands, simulation setup and data presentation windows.

2.2 Open a Template

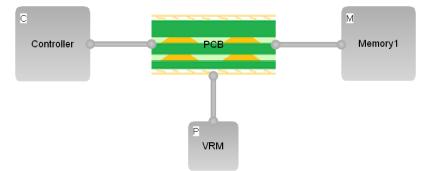
- 1. Launch SystemSI.
- 2. To open a new workspace, select *File -- New*.

Alternatively, you can also click the **New** icon.

The Select Module window opens.

Se	lect Module	X
	Module Name	
	Parallel Bus Analysis	
	Serial Link Analysis	
	Testbench	
		OK Cancel

- 3. Select Parallel Bus Analysis.
- 4. Click **OK**.
 - The Choose License Suites window appears.
- 5. Select the license and click **Close**.
- The New Workspace window opens.
- 6. Select Create by Template.
- 7. Select data_bus_welem_vrm.

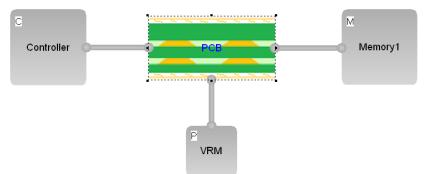

New Workspace O Create by setting O Create by template Ter	nplate Path: [5\ASI\BASE\speedxp\library\template	× e\SystemSI\ParallelBus
Name	Path	Description
addr_bus_sparam_4mem data_bus_sparam_2mem data_bus_welem_2rank data_bus_welem_yrm pba_simple_em	D:\Cadence\SPB_16.6\ASI\BASE\spee D:\Cadence\SPB_16.6\ASI\BASE\spee D:\Cadence\SPB_16.6\ASI\BASE\spee D:\Cadence\SPB_16.6\ASI\BASE\spee D:\Cadence\SPB_16.6\ASI\BASE\spee	
•	111	
Name: Location: D:\sipbatut		
	E	OK Cancel

- 8. Enter a Name for the project. For this tutorial, enter the name as *mysipba*.
- 9. Enter a **Locatio**n.

	A directory with the workspace name is created in the location specified.
NOTE!	This directory contains the workspace file, <i>mysipba.ssix</i> , as well as all of the models for the memory controller, memory device and other bus blocks that are available in the single device template folder.

10. Click **OK**.

The Block diagram is created.


This is a pre-constructed, ready to simulate template, consisting of a controller and a single memory device. IBIS models are defined, edited, and linked to the devices. The PCB interconnects are coupled transmission line models, consisting of HSPICE W-element components. There is also a Voltage Regulator Module (VRM) block that has power supply explicitly defined. This is required for simulations including non-ideal power (i.e. no "ideal power" assumption at the IO models).

2.3 Editing Components

Irrespective of the method used to create the design, if required, you can edit the blocks as well as the connections. Editing a block and connection in the system is done by double-clicking the block.

2.3.1 PCB Block

1. Double-click the **PCB** component.

The **Property** dialog box opens. The left side of this dialog defines the **Connections** to this component, using Sigrity model-connection protocol (MCP).

Conn. Port	Connect To	Block Name	Conn. Port		subckt pcb_traces
to_Controller		Controller	to_PCB	Edit Layout L	+ a2 b2 c2 d2 e2 f2 g2 h2 i2 j2 k2 ref
to_Memory1		Memory1	to_PCB	Edit Layout L	+ pwr_vrm pwr_controller pwr_mem + gnd vrm
to_vrm		VRM	vrm_power	Edit Layout L	+ grid_vrin
					* [MCP Begin] * [Connection] to_Controller * [Connection] to_Controller * [Cover Nets] * Lumped(36) pwr_controller VDDQ * [Ground Nets] * Lumped(38) ref V5SQ * [Signal Nets] * 62 e1 DQ4
4		111		-	Launch MCP Header Editor TLine Editor Import Edit Sub-circuit Definition

2. Click the Green **Connect To** wires icons.

The MCP connectivity between these components, with specific pin to pin mapping, is shown.

Block Name: PCB	Block Name: Memory1	
Conn. Port: to_Memory1	Conn. Port: to_PCB	
PinName / CktNodeName / NetName	PinName / CktNodeName / NetName	
A1 / pwr_mem / VDDQ	A1 / A1 / VDDQ	
= B1 / ref / VSSQ	B1 / B1 / V55Q	
E3/a2/DQ0	E3 / E3 / DQ0	
F2 / c2 / DQ2	F2 / F2 / DQ2	
F3 / j2 / LDQ5	F3 / F3 / LDQS	
F7 / b2 / DQ1	F7 / F7 / DQ1	
F8 / d2 / DQ3	F8 / F8 / DQ3	
G2 / g2 / DQ6	G2 / G2 / DQ6	
G3 / k2 / LDQ5#	G3 / G3 / LDQ5#	
H3 / e2 / DQ4	H3 / H3 / DQ4	
🚽 H7 / h2 / DQ7	н7 / H7 / DQ7	-
Y	Auto Connect Auto net property overwrite	
Connection Connection definition		

3. Click **Cancel** to exit this MCP dialog without making changes.

The right side of the Property dialog has model or circuit netlist definition for the component. This SPICE netlist file can be swapped for an alternative file, or edited in a text editor.

The W-element description for the PCB traces in this file can be viewed by scrolling down as shown in the following figure.

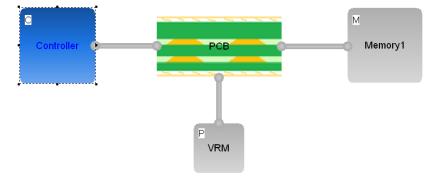
File Name: D:\sipbatut\aa\pcb_traces.sp Sub-circuit Name: pcb_traces	•
.Model pcb_traces_pcb_traces_Wmodel1 W MODELTYPE=RLGC N=11	
+Lo=	
+ 3.39692013e-007	
+ 2.50220882e-008 3.38937451e-007	
+ 1.97017452e-009 2.49627545e-008 3.38932785e-007	
+ 1.55167741e-010 1.96550152e-009 2.49623871e-008 3.38932756e-007	
+ 1.22207723e-011 1.54799703e-010 1.96547258e-009 2.49623848e-008 3.38932756	
+ 9.62489215e-013 1.21917863e-011 1.54797424e-010 1.96547240e-009 2.49623846	-
+ 7.58043534e-014 9.60207123e-013 1.21916079e-011 1.54797423e-010 1.96547257	
+ 5.65875370e-015 7.56257868e-014 9.60206739e-013 1.21917810e-011 1.54799638	
+ 0.00000000e+000 5.65837925e-015 7.57997024e-014 9.62423166e-013 1.2219951	
+ 0.00000000e+000 0.0000000e+000 0.0000000e+000 1.25958835e-014 1.616929	
+ 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000 1.26323	
+ Co=	
+ 1.24293483e-010	•
Launch MCP Header Editor TLine Editor Import Edit Sub-circuit Definition]

4. In case you need to edit the model or circuit netlist definition, click the **Edit Sub-circuit Definition** button.

The file opens in editable mode in the Sub-circuit Definition Editor tab. You can make the required modifications to the file and click OK to save the changes.

- 5. For this design example, exit the Sub-circuit Definition Editor tab without making changes.
- 6. If required, you can add or modify the MCP header by selecting the Launch MCP Header File button.

Sub-circuit		Туре		Conn. Port			Туре
pcb_traces				to_Memory1			
		1		to_vrm to_Controller			
Ckt Node			⊫				
Signal Net(s) a1		-> Signal Net		Name / CktNodeName / NetN	X	Y	Thru Conn. Por
a2			Θ	Signal Net(s)			
62 b1				E3 / a2 / DQ0			to_Controlle
b1 b2		-> Power Net		E7 / i2 / LDM			
c1	=			F2 / c2 / DQ2			to_Controlle
c2	-		5	F3 / j2 / LDQS			to_Controlle
d1		-> Ground Net		F7 / b2 / DQ1			to_Controlle
d2			<u> </u>	F8 / d2 / DQ3			to_Controlle
e1		Select ckt node(s)		G2 / g2 / DQ6			to_Controlle
e2		and add it(them) to		G3 / k2 / LDQ5#			to_Controlle
6L f1		the selected Conn.		H3 / e2 / DQ4			to_Controlle
f2		Port.		H7 / h2 / DQ7			to_Controlle
q1				H8 / f2 / DQ5			to_Controlle
g2				Power Net(s)			
h1				A1 / pwr_mem / VDDQ			to_Controll.
h2				Ground Net(s)			
i1				B1 / ref / VSSQ			to_Controll.
i2							
41							


NOTE! If the .sp or the .ckt file does not have the MCP header, you need to add the same by editing the MCP header. By default, models generated by Sigrity tools (.sp or.ckt), contains the MCP header.

7. Exit the MCP Header Editor without making any modifications.

NOTE: The **TLine Editor** button is used to define the properties of the transmission line block (PCB). Use the **Import** button to import the properties of the Tline block already defined in other project files. To know more about the usage of these buttons, see *Pre-Layout Transmission Line Modeling AppNote:SystemSI*.

2.3.2 Controller / Memory Block

1. Double-click the **Controller** or **Memory** component.

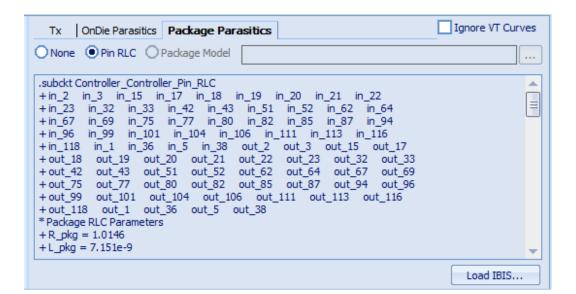
	roller			Tx OnDie Parasitics Package Parasitics Ignore VT Curve
Conn. Port	Connect To	Block Name	Conn. Port	IBIS File: D:\ASI166\1664\SSI_PBA\pba1\ssi_pba_{ d
to_PC8		PCB	to_Controller	subdxt Controller +2 3 15 17 18 19 20 21 22 23 33 42 +43 51 52 62 64 67 69 75 77 80 82 85 +87 94 96 99 101 104 106 111 113 116 118 +1 36 5 38 *

The **Property** dialog box that opens is similar to the one for the PCB, except for the editing function. Instead of a simple text editor, there is a **Load IBIS...** button.

2. Click the **Load IBIS...** button, and view the IBIS model definition for this Controller component.

In this window, the IBIS models maybe specified, and the **Pin Mapping** and **Bus Definitions** for the model can be viewed and defined. Changes made in this window will update the IBIS file.

oad IBIS								- 🗆 ×
D:\sipbatut\	\mysipba\ssi_pba_ex.ibs				Comp	onent : Controller		Edit IBIS
Pin Mapping Bus Definition Explicit IO Power and Ground Terminal							d Ground Terminals	
Pin	Pulldown	Pullup	GND Clamp	Power Clamp	Signal Name	Model Name	Bus Group	
1		PWRBUS1			VDD	POWER		=
10	GNDBUS1	PWRBUS1	GNDBUS1	PWRBUS1	RESET	DDR3_DQ34_N		
100	GNDBU52				¥55Q	GND		
101	GNDBUS2	PWRBUS2	GNDBU52	PWRBUS2	DQ9	DDR3_DQ34_N	DataU	
102		PWRBUS2			VDDQ	POWER		
103		PWRBUS2			VDDQ	POWER		
104	GNDBUS2	PWRBUS2	GNDBU52	PWRBUS2	UDQS	DDR3_DQS34	Timing Ref	
105	GNDBUS2				¥55Q	GND		
106	GNDBUS2	PWRBUS2	GNDBU52	PWRBUS2	UDQ5#	DDR3_DQS34	Timing Ref	
107		PWRBUS2			VDDQ	POWER		
108		PWRBUS1			VDD	POWER		
109	GNDBUS1				VSS	GND		
11					DNU	NC		
Filter							ОК	Cancel


The MCPs of the Controller and Memory blocks are generated by SystemSI based on the bus definition, Pin Mapping, and setup of the **Load IBIS** GUI. These are not editable.

To know more about the MCP generation process, see Rules for Generating MCPs.

3. Click **Cancel** to exit without making changes.

In the **Property** dialog, the OnDie Parasitics and Package Parasitics tabs can be used specify the **Die** and **Package** models, respectively. These can be separate model files, like a PKG file, or simply the RLC package parasitics that are already included in the IBIS model.

4. To view the Pin model in the IBIS file, click the **Package Parasitics** tab and select **Pin RLC**.

	For Parallel Bus Analysis, the Ignore VT Curves option is not selected by
NOTE	default. This is to ensure that during analysis, simulator takes into account the
	non-liner behavior of the drivers by reading the VT data.

2.3.2.1 MCP Generation for Controller and Memory IBIS Blocks

This section details the rules or the guidelines followed by SystemSI for generating MCPs.

 In the Load IBIS dialog box, if the Explicit IO Power and Ground Terminals option is not checked, the Ckt Node, Net, and Pin in the MCP are determined by the Pin Mapping section of the IBIS component.

Block Nam	e:	Controller	
Conn. Por	t:	to_PCB	
A PinNa	ame / Ckt	NodeName / NetName (Sort By Ck.	/
	64 / 64	/ DQ6	
	67 67	/ DQ7	
	69 69	/ DQ5	
	75 75	/LDQS#	
	77 77	/ LDQS	
	80 / 80		
_	82 82		
=	85 / 85		
	87 87		
		ected Signal Net(s)	
		2 / CLK1N	
	•	3 / CLK1P	
		15 / 47	
		17 / A2	
		18 / A6 19 / A5	
		19 / A5 20 / A1	
	•	20 / A1 21 / A3	
	•	22 / A4	
		23 / A0	
		20770	

- The values in the **Ckt Node** and **Pin** columns are the same, and are read from the **Pin** column in the **Pin Mapping** section of the Load IBIS dialog box.
- The values in the Net column of the MCP Editor are same as the values in the Signal Name column in the Pin Mapping section of the Load IBIS dialog box.
- 2. If the Load IBIS dialog box has the **Explicit IO Power and Ground Terminals** option checked, in the generated MCP, each signal has its corresponding power and ground as shown in the following figure.

Copp	Port:	to PCB
	, Port,	0,70
PinN	lame / CktNod	leName / NetName (Sort By Ckt N 🔽
	Unconnecte	ed Signal Net(s)
	15 / A7	•
	18 / A6	•
	19 / A5	
	22 / A4 21 / A3	
	21 / A3 17 / A2	•
	20 / A1	
	23 / A0	•
		-
		ed Power Net(s)
) / A7_VDD / VDD
) / A6_VDD / VDD) / A5_VDD / VDD
) / A4_VDD / VDD
		/ A3_VDD / VDD
		/ A2_VDD / VDD
	A1_VDD	/ A1_VDD / VDD
	A0_VDD) / A0_VDD / VDD
		ed Ground Net(s)
		/ A7_VSS / VSS
		/ A6_VSS / VSS
		/ A5_VS5 / VS5 / A4_VS5 / VS5
	_	/ A4_VS5 / VS5 / A3_VS5 / VS5
		/ A3_VS5 / VS5
	_	/ A1_VSS / VSS
		/ A0_VSS / VSS

The MCP is generated using following rules:

- In case of a regular signal, the **Ckt Node** value is same as the **Signal Name** in the **Pin Mapping** section
- For the corresponding power signals, the values in the **Ckt Node** and **Pin** columns are the same, and these are derived by combining the signal Net and power Net.
- Similarly, for the Ground of the signal, the **Ckt Node** and **Pin** values are the same, and these are derived from the signal Net and the ground Net.

You can click **Ckt Node** of the Controller/Memory block to sort the **Ckt Node** for easy connection.

The signal and its power and ground are grouped together for the Controller/Memory block in order to make the manual connecting easy.

NOTE!	When Explicit IO Power and Ground Terminals are utilized, all the powers and grounds of the Controller/Memory must be connected in order to do the non-ideal power bus simulation.
-------	--

2.3.3 EBD Block

While using SystemSI you can also import the Electrical Board Description (EBD) models that are as per the IBIS specification. EBD models are imported directly into SystemSI and automatically expanded out to include interconnect and referenced component blocks. EBD files are commonly used for modeling DIMMS.

NOTE: In SystemSI you cannot instantiate an EBD block along with a memory block. This is not supported.

2.3.3.1 EBD File

When you associate an EBD model to an EBD block in SystemSI, the model information is displayed in the four tabs of the Load EBD dialog box.

IBIS Tab

This tab lists all the Memory blocks and Terminators listed as Reference Designators. To view the Pin Mapping of a memory block or a terminator, from the **Reference Designator** drop-down list, select the refdes of the component.

Note: A Terminator can have its own IBIS component; but all the Memory blocks must share the same component of the same ibis file.

Bus Definition

This tab lists the Bus groups defined for the Memory component. If required, use this tab to add and define new bus groups.

Power & GND net

The EBD model does not have the definitions for the Power and Ground nets. In order for the IBIS components to get the power supply from outside the EBD, each IBIS Power Pin must be linked to one EBD Power Pin that is connected to other blocks. The same is true for the IBIS Ground Pins.

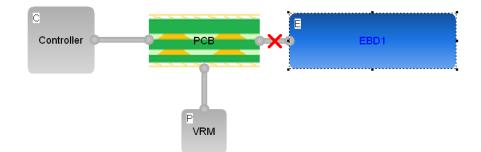
NOTE!	Only the IBIS Power and Ground Pins that are associated with the defined
	Bus signals are listed in the Power & GND net tab.

Signal Net

The IBIS Pins are for the defined Bus signals of the Memory blocks. If a signal is defined in the EBD file, it's IBIS Pin and the EBD Pin will be listed together in the same row. All the EBD pins are listed in the MCP are use for the connection to the other blocks.

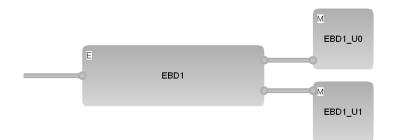
RD Rin	EBD Signal	Туре	IBIS Pin	IBIS File	IBIS Component	IBIS Signal		
33	DQ0	Signal	U0.87	v69a bd stack	MT413512M4			
	DO2	Signal	U0.85		MT413512M4			
12 13	DQS	Timing Ref	U0.77		MT413512M4			
7	DQ1	Signal	U0.80		MT413512M4			
8	DO3	Signal	U0.82		MT413512M4			
03	DQS#	Timing Ref	U0.75		MT413512M4			
33	DQ0	Signal	U1.87	v69a bd stack	MT413512M4	DQ0		
2	DQ2	Signal	U1.85	v69a_bd_stack	MT413512M4	DQ2		
3	DQS	Timing Ref	U1.77	v69a_bd_stack	MT413512M4	DQS		
.7	DQ1	Signal	U1.80	v69a_bd_stack	MT413512M4	DQ1		
8	DQ3	Signal	U1.82	v69a_bd_stack	MT41J512M4	DQ3		
3	DQ5#	Timing Ref	U1.75	v69a_bd_stack	MT413512M4	DQ5#		
	Listed as	Signals i	n the MCP:	to_PCB,				

2.3.3.2 Using EBD Models in System SI


To import an EBD models in SystemSI, you first add an instance of EBD block on the schematic and then associate the EBD file with the EBD block.

To instantiate an EBD block:

1. Click the 💷 button.


Note: This button is enabled only if you do not have a memory block instantiated on the canvas.

- 2. Click on the canvas to add an instance of EBD component.
- 3. To connect EBD block to the PCB block, right-click on the EBD1 instance and from the pop-up menu choose **Add Connection Between PCB**.

- 4. To assign an EBD model to the EBD block, open the Property window for the EBD block.
- 5. Click the Load EBD... button
- 6. In the Load EBD dialog box, use the Browse (...) button to navigate to the .EBD file.
- As you load the EBD file, the IBIS, Bus Definition, Power & GND Net and Signal Net for the model can be viewed in the respective tab. If required you can modify these. Changes made in the IBIS and Bus Definition panels will update the IBIS files.
- 8. Click OK to close the Load EBD dialog box.
- 9. Click the Apply button to build the EBD model.

Depending of the EBD model, new Memory blocks are automatically added to the schematic.

2.3.4 S Parameter Block

2.3.4.1 Add S Parameter Block

1. Click the Add S Parameter Block icon 🗊 on the tool bar, and click in the Layout window. The S Parameter block S1 is added.

r 🖌 🚡 🖌	5 @ @ V @ @ @
	Add S Parameter Block
S	
×	
~	
<u>.</u>	

2. Double-click the **S1** block.

The **Property** pane opens.

roperty						-
Block Name: S1						
Conn. Port	Connect To Bl	ock Name Conn. Port				
	111		▶		Load S	Parameters.
onnection						
				ОК	Cancel	Apply

2.3.4.2 Load S Parameter File

1. Click the Load S Parameters... button.

Organize 🔻 New fol	der		=
☆ Favorites		Date modified Type	Size
Desktop	bufferdelay	4/1/2013 3:56 PM File folde	r
Downloads	Chapter3_IBIS	12/19/2012 10:32 File folde	
Recent Places	history	5/2/2013 10:21 AM File folde	
😪 My Site	in result	4/8/2013 11:08 AM File folde	
	DDR2_s2k_sample1.bnp	11/26/2012 1:38 AM BNP File	15,074
🔚 Libraries 📕	tutorial_PCB1.bnp	11/26/2012 1:40 AM BNP File	3,256
Documents			
J Music			
Pictures			
Videos			
🖳 Computer			
🚢 Local Disk (C:)			
👝 Local Disk (D:) 🖕	•	III	
	name:	✓ S Parameter Fil	e(*.bnp; *.s?p; *.: 🔻

The Load S Parameters window opens.

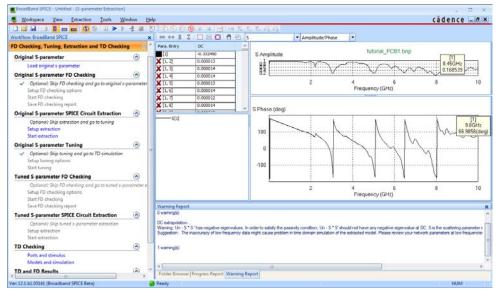
2. Load the S Parameter file (BNP or Touchstone) to the S Parameter block.

For this tutorial, load the **tutorial_PCB1.bnp** file available at <install_dir>/SpeedXP/Samples/SystemSI/Parallel Bus Analysis/Tutorial

Once the selected S Parameter file is successfully loaded, . sp file is automatically generated and loaded to the block.

- The .sp filename is displayed in the File Name field.
- The S Parameter filename is displayed in the S Parameter File field.

S Parameter File:	D:\Cadenc=\SPB_16.6\AS	(\Update4\SpeedXP\Sampl	es\System5	View S Paramete	er
.SUBCKT	S1 tutorial PCB1 bnp				*
+	U20_AC8			ſ	
+	U20_A3			Ì	
+	U20_AF16				
+	U20_AE17				
+	U20_AH17				
+	U20_AG17				
+	U20_AG18				
+	U20_AH18				
+	U20_AD18				
+	U20_AF19				
+	U20_AH19				
+	U20_AD19				
+	U20_AG20				
+	U20_AH20				\mathbf{T}
•	111			•	
Extract BBS Mod	el Load BBS Model	Launch MCP Header Edi	tor Loa	d S Parameters	


- If the BNP file has the MCP information, the MCP section is automatically added to the .sp file for connection.
- In case the Touchstone or BNP files do not have the MCP information, you are expected to manually add the MCP through the MCP Editor.

2.3.4.3 Extract the BBS Model

To improve convergence and simulation performance, it is sometimes advantageous to convert the S-parameters into a Broadband Spice circuit model. This section covers the steps to generate a circuit model from the S-parameter model used in the previous section.

1. In the Property dialog box for the S-parameter block, click the Extract BBS Model... button.

The BroadbandSPICE application is launched.

2. Click the **FD Checking**, **Tuning**, **Extraction and TD Checking** workflow to check and tune the S Parameters.

For the application of BroadbandSPICE, refer to *BroadbandSPICE_Tutorial.pdf* and *BroadbandSPICE_UG.pdf*.

3. If the S Parameter checking result looks good to you, click **Setup extraction** in the workflow.

riginal S-parameter	
Load original s-parameter	
riginal S-parameter FD Checking	
Optional: Skip FD checking and go to	original s-parame
Setup FD checking options	
Start FD checking	
Save FD checking report	
riginal S-parameter SPICE Circuit Ext	raction 🔗
Optional: Skip extraction and go to tu	ning
Setup extraction	
Start extraction	
riginal S-parameter Tuning	\odot
Optional: Skip tuning and go to TD sir	mulation
Setup tuning options	
Start tuning	
uned S-parameter FD Checking	<u></u>
Optional: Skip FD checking and go to	tuned s-paramet
Setup FD checking options	
Start FD checking	
Save FD checking report	
uned S-parameter SPICE Circuit Extra	ction 📀
Optional: Skip tuned s-parameter extr	raction
Setup extraction	
Start extraction	
D Checking	٢
Ports and stimulus	
Models and simulation	
D and FD Results	٢
TD results	
FD results	

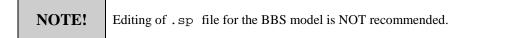
The **Options** window opens.

Options	
General File Manager Simulation (Basic)	Change the 'Extraction settings' options in BroadBand SPICE
General Report template	Highlight Error
Settings 📀	Highlight Errors Greater Than : 0.02
Extraction settings Checking settings	Extraction Mode
Tuning settings	Passivity mode Maximum number of iterations for passivity enforcement: 200 Precision mode
	BBS Circuit
	HSPICE Compatible General SPICE Compatible
	File Name : tutorial_PCB1_BBSdkt.txt
	S-parameter of BBS Circuit
	Export Touchstone Format BNP Format File Name : [utorial_PCB1_BBSckt_sp.s39p
	Model Order Reduction
	Ignore off-diagonal S parameters that are less than: Don't use reduction on these ports: Preserved Port(s)
	Reduce upper frequency limit: 10 GHz V
	MCP File
	File Name :
	Default Apply OK Cancel

- 4. Set up the extraction settings as desired, and click OK to save your settings and to close the Options window.
- 5. Click **Start extraction** in the workflow to extract the BBS model.

If the BBS model extraction is successful, a .txt file is automatically generated in the folder that has the S-parameter (.bnp) file.

You can now load the generated BBS Model in SystemSI.


- 6. To load the generated BBS model **tutorial_PCB1_BBSckt.txt**, from the SystemSI GUI, click the **Load BBS Model...** button.
- 7. Select the circuit file and click Open.

Load BBS Model					×
🕤 🌍 – 🕌 « Tuto	rial I	BBSResult_tutorial_PCB1	▼ 4 ₃	Search BBSResult_tu	ıtorial_PCB1 🔎
Organize 🔻 New	folde			:=	
🔆 Favorites	•	Name	Date modified	Туре	Size
🧮 Desktop		鷆 temp	4/11/2013 10:59 AM	File folder	
〕 Downloads		tutorial_PCB1_BBSckt.txt	4/11/2013 11:24 AM	Text Document	8,415 K
🔛 Recent Places		tutorial_PCB1_BBSckt_2.txt	4/11/2013 11:24 AM	Text Document	6,169 K
🧟 My Site		tutorial_PCB1_for_RFM.txt	4/11/2013 11:24 AM	Text Document	4 K
	-	tutorial_PCB1_GSPICE.txt	4/11/2013 11:24 AM	Text Document	44,706 K
 ☐ Libraries ☐ Documents J Music ☐ Pictures ☑ Videos 					
🖳 Computer					
🚢 Local Disk (C:)					
👝 Local Disk (D:)	Ŧ	•			•
F	ile <u>n</u> a	me: tutorial_PCB1_BBSckt.txt	▼ BBS	Model File(*.txt)	▼ Cancel

Once the **BBS model is s**uccessfully loaded, an .sp file is **automatically generated** and loaded to the block.

- The .sp file is displayed in the File Name field
- The BBS model .txt file is displayed in the BBS Model File field

			utorial\BBSRe Go To S	arameter
CKT	S1_tutorial_PCB1_bnp			
	U20_AC8			[
	U20_A3			Ŀ
	U20_AF16			
	U20_AE17			
	U20_AH17			
	U20 AG17			
	U20_AG18			
	U20 AH18			
	U20 AD 18			
	U20 AF 19			
	U20 AH19			
	U20 AD 19			
	U20_AG20			
	U20_AG20 U20_AH20			
	U20_AG20 U20_AH20 U20_AH21			
	U20_AG20 U20_AH20			
	U20_AG20 U20_AH20 U20_AH21 U20_AH21 U20_AE21			

2.3.4.4 Load the BBS Model

If you have the BBS models for the selected S Parameters, click the **Load BBS Model...** button to directly load the BBS .txt file.

Please refer to Step 6 in Section 2.3.4.3 Extract the BBS Model for details.

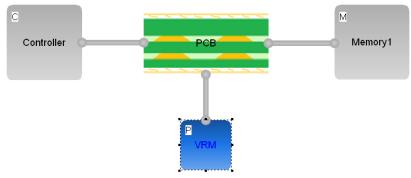
If the loaded BBS model does not match the original S Parameters, an error message will be issued.

SystemSI		×
Â	The loaded BBS model "DDR2_s2k_sample1_GSPICE.txt" does not match the original S Parameter model "Spara".	
	ОК	

2.3.4.5 Switch the Models

1. Click the Go To S Parameters button to switch to the original S Parameters model.

File Name: C:\Cadence\SPB_16.6\ASI\Base\SpeedXP\Samples\Sys Sub-circuit Name: S1_tutorial_	PCB1_bnp
BBS Model File: C:\Cadence\SPB_16.6\ASI\Base\SpeedXP\Samples\SystemSI\Parallel Bus Analysis\Tutoria	al\BBSRe Go To S Parameters
SUBCKT S1_tutorial_PCB1_bnp + U20_AC8 + U20_A7 + U20_AF16 + U20_AF17 + U20_AG17 + U20_AG18 + U20_AF19 + U20_AF19 + U20_AD19 + U20_AG20 + U20_AH21 + U20_AH21 + U20_AH22	
↓	
Load BBS Model	Edit Sub-circuit Definition


2. Click the Go To BBS button to switch back to the BBS model:

File Name:	C:\Cadence\SPB_16.6\ASI\Base\Speed	XP\Samples\Sys Sub-circuit Name: S1_tutorial_PCB1_bnp 💌
S Paramete	r File: C:\Cadence\SPB_16.6\ASI\Base	<pre>SpeedXP\Samples\SystemSI\Parallel Bus Analysis\Tutorial\tutorial_PC</pre> Go To BBS
.SUBCKT +	S1_tutorial_PCB1_bnp U20_AC8	
+	U20_A3	
+ +	U20_AF16 U20_AE17	
+++	U20_AH17 U20_AG17	
+++	U20_AG18 U20_AH18	
++	U20_AD18 U20_AF19	
+++	U20_AH19 U20_AD19	
+++	U20_AG20 U20_AH20	
+	U20_AH21	
+ +	U20_AE21 U20_AH22	
+	U20_AD21	*
Extract BB	S Model	Load S Parameters Edit Sub-circuit Definition

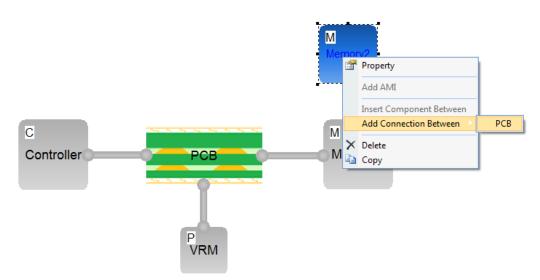
NOTE! The MCP section will be shared among the BBS models and the original S Parameter model. Any MCP change to one .sp file through the MCP Editor will automatically update the MCP section in other .sp files.

2.3.5 VRM Block

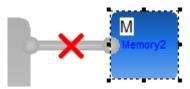
1. Double-click the **VRM** component.

The VRM component for this template is simply an ideal DC supply of 1.5 Volts. Parallel Bus Analysis parameterizes the corner voltages here, including, **Min**, **Typ**, and **Max** VRM voltages, for fast, consistent simulation of the IBIS corner models.

Voltage Ra Typ: 1.5		in(Slow): 1.425	Ma	ax(Fast): 1.5	75	D	efault	٦
.subckt vrm * User-spec + Voltage = * [MCP Begi * [Connectio * [Connectio * [Connectio * [Power Ne * 1 pwr VDD * [Ground N * 2 ngnd VS * [Signal Ne * [MCP End]	fied corner v 1.5 \$ n] on] vrm_pow on Type] ts] Q ets] 5Q ts]	2	rst transmit	: 'Corner' selec	cted in the 'Sir	nulation Contr	roller'.	
					E	Edit Sub-circui	t Definitio	n


2.4 Adding New Components

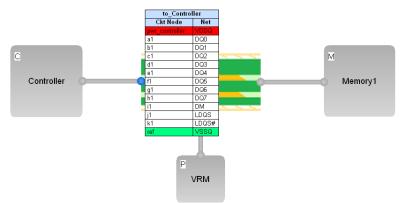
You can add new components to the schematic, by selecting appropriate tool button from the Add Block toolbar. This section demonstrates the procedure to add a new memory block to the schematic.


1. To add a new Memory block, click the **Memory Block** component on the toolbar, and place it on the schematic.

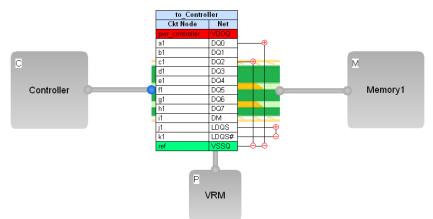
🖃 छ छ छ छ 🖾	TE 을 릭 하	ï
	Add Memory Block	Ì

2. To add a connection of this block to the **PCB** block, right-click on the Memory2 component, and choose **Add Connection Between -- PCB**.

3. Because the MCP connection to the new component has not been defined, there is a Red X on the PCB to Memory2 connection. (Note: Delete Memory2 block before you go on the following steps.)



User can use this method to add other components.


2.5

Setting up Probe Points

1. Click the connection point to open the **Ckt Node** menu.

2. To set Probe Point for the simulation, click two Ckt Nodes in the menu.

- The two selected nodes are connected.
- The node clicked first is defined as positive, and the second is negative.

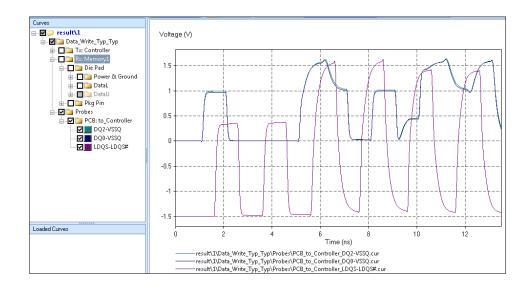
In this section, setup Probe points between c1 and ref, a1 and ref, and j1 and k1.

3. To view and edit the defined Probe Points, from the **Setup** Menu, select Probe **Point**....

	Seti	qL	Tools	Window	Help			
4	Analysis Options Terminate Unconnected Nodes							
	Verify Timing Specs before Simulation							
1	\$	 Pause before Simulation 						
- ir		Hide Previous Curves						
Ŀ	Sweep Mode							
		Pr	obe Poinl	t				

The Probe Point window opens as shown in the following figure.

nable	Signal Name	Block Name	MCP Connection	Positive Ckt Node	Negative Ckt N	
1	DQ2-VSSQ	PCB	to_Controller	c1	ref	
1	DQ0-VSSQ	PCB	to_Controller	a1	ref	
1	LDQS-LDQS#	PCB	to_Controller	j1	k1	


4. By default, all probe points are enabled. To disable a probe, clear the check box next to the probe, as shown.

Probe Poin	its					- 🗆
Enable	Signal Name	Block Name	MCP Connection	Positive Ckt Node	Negative Ckt N	
v	DQ2-VSSQ	PCB	to_Controller	c1	ref	
	DQ0-VSSQ	PCB	to_Controller	a1	ref	
V	LDQS-LDQS#	PCB	to_Controller	j1	k1	
4						
•			111		P	
		es the display of the t, click on the connect				Close

5. To show or delete the defined Probe Points, right-click and select from the pop-up menu.

nable	Signal Name	Block Name	MCP Connection	Positiv	e Ckt Node	Negative Ckt N	
1	DQ2-VSSQ	PCB	to_Controller	c1			1
1	DQ0-VSSQ	PCB	to_Controller	a1		All Highlighted Items	
1	LDQS-LDQS#	PCB	to_Controller	j1	Show	All	
				Hide A	All Highlighted Items		
					Hide A	AII	
			Delete	All Highlighted Items			

NOTE: After the simulation, the curves of all the defined Probe Points can be viewed from the 2D Curve Window.

2.6 Setting up the Simulation

The Analysis Options Dialog sets most of the key aspects of the simulation.

1. From the Setup menu, select *Analysis Options*....

Set	qu	Tools	Window	Help			
	An	alysis Oj	ptions				
	Terminate Unconnected Nodes						
	Verify Timing Specs before Simulation						
 Pause before Simulation 							
	Hio	de Previo	ous Curves				
Sweep Mode							
	Pre	obe Poin	t				

The Analysis Options dialog box displays.

Analysis Options						_ 🗆 ×
Simulator - Contain Simulator for Data Bus \ Crcut Simulator O HSPICE Crcut Simulator Option: * Add global .option and .include comm * They'l be used for time domain chare * .option demax=200	Simulation Configuration Bus Type: Data Oriection Fast Virte Slow Fast/Slow Slow/Fast Active Ranks: = of Ranks: 1	Controller Memory Bus Group/Signal DataL D DataL D DQ1 DQ2	Clock Period: T = 2 Stimulus Pattern 1000110101110001 1000110101110001 1000110101110001	Stimulus Offset (ns) Default 0.5T 0.5T 0.5T	Bolay Memory Blocks Sh Transmit IO Model DDR3_DQ34_NO_ODT DDR3_DQ34_NO_ODT DDR3_DQ34_NO_ODT	16 are IO Models Status Signal Signal Signal
opuar ocinica - cop	Active ratik: # 01 Ratiks; 1 V Rank Name Memory Blocks	✓ DQ3 ✓ DQ4 ✓ DQ5 ✓ DQ6 ✓ DQ6 ✓ DQ7 ✓ LDQs ✓ LDQs# ✓ LDQs# ✓ DataU	1000110101110001 1000110101110001 1000110101110001 1000110101110001 1000110101110001 10 01	0.5T 0.5T 0.5T	DDR3_DQ34_NO_ODT DDR3_DQ34_NO_ODT DDR3_DQ34_NO_ODT DDR3_DQ34_NO_ODT DDR3_DQ34_NO_ODT DDR3_DQ34_NO_ODT DDR3_DQ34_NO_ODT DDR3_DQ534_NO_ODT	Signal Signal Signal Signal Signal Timing Re Timing Re
Simulation Name Automatic Custom Restore Defaults	Auto Assign	ID Model Filter:		III	OK Cancel	Apply

In this dialog box, you can specify the following simulation settings.

• If the design has more than one type of Bus defined, select the Bus type to be simulated.

-Simulation Configuration-							
Data							
AddCmd							
Data							
	Data						

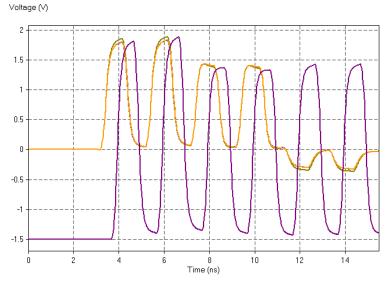
• Simulation can be run assuming Ideal or Non-ideal Power.

• IO models for Controller and Memory may be selected through the GUI.

	_
DO 34 1066	-
DQ_34_1066	^
DQ_34_1333	=
DQ_34_1600	_
DQ_34_2133	
DQ_34_ODT120_1066	
DQ_34_ODT120_1333	
DQ_34_ODT120_1600	
DQ_34_ODT120_2133	
DQ_34_ODT20_1066	
DQ_34_ODT20_1333	~

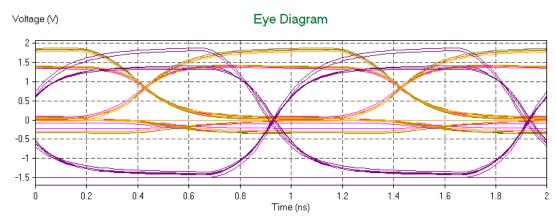
To save Simulation Settings, click on the OK button.

2.7 Running the Simulation


1. Start the simulation with the default settings, by clicking the **Play** icon.

i II 🕨 🔳

2. The simulation status opens.


•	SParamExtraction.sp							
File	View	Analysis	Options	Help				
8.00	i III 🕨 🔳							
		Solving free	quency 7.20	0000e+008	Frequency sweeping			

3. The time domain waveforms are shown in a 2D curve Display, upon completion.

4. Use the toolbar icons to view the Eye Diagrams.

i 📲 🚾 🍔 😂

The paths for the various templates are automatically generated during **SystemSI - Parallel Bus Analysis** installation and cannot be modified.

NOTE! Do not change the name or location of the template folders, i.e. <INSTALL_DIR>\SpeedXP\Library\template\SystemSI\ParallelBus.

It is not advisable to change the contents of any of the template folders, since they are used to create the new workspace directory with all of the component models, connectivity, and settings.

2.8 Custom Templates

Advanced users can create and edit their own templates to utilize as a starting point for SystemSI projects. To do this,

- 1. Create a self-contained SystemSI project, with all required models and connectivity, in a directory, say, my_new_template.
- 2. Within that directory, name the SystemSI project the same name as its directory, my_new_template.ssix.
- Remove any extraneous data, for example result and history folders, from the project and place the directory at the same location as that of default templates
 <INSTALL_DIR>\SpeedXP\Library\template\SystemSI\ParallelBus.

The new template will appear upon SystemSI startup for your use.

3 IBIS File Augmentation

3.1 Overview

SystemSI - Parallel Bus Analysis is compatible with the I/O Buffer Information Specification (IBIS), including BIRD95 (composite current) and BIRD98 (gate modulation effect) to allow non-ideal power and ground IO modeling. Interconnects, including boards, connectors, and cables can be modeled with frequency-domain S-parameter data or SPICE-compatible subcircuits, and connected together with explicit power and ground connections to preserve SI and PI behavior related to planes and power/ground pin performance. Transistor-level I/O models in HSPICE format may also be included through the IBIS model interface. Connectivity between components is fast and robust with Model Connection Protocol (MCP).

In order to enable the automation provided by SystemSI - Parallel Bus Analysis, some augmentation of the standard IBIS files is required. Specifically, the definition of bus groups, timing reference signals, and setup/hold specifications are needed. This can all be done through the GUI, and comments are automatically embedded into the IBIS file itself.

In this chapter, the user will learn about key IBIS file dependencies for Parallel Bus Analysis that must be present in the IBIS files for Controllers and Memory. These include the Pin Mapping specification, and the new Bus Definition. We will use a template file to examine and edit a sample IBIS model.

An HSPICE transistor-level driver model in IBIS will be demonstrated.

3.2 IBIS Resources

SystemSI - Parallel Bus Analysis supports the most recent IBIS specification. This popular behavioral modeling format is useful for memory system components like controllers and DRAM devices. To read more about IBIS, please reference the following material.

IBIS specification

http://www.eigroup.org

 Pointers to IBIS models of different IC manufacturers <u>http://www.eigroup.org/IBIS/ibis%20table/models.htm</u>

3.3 Bus Definition

SystemSI - Parallel Bus Analysis introduces the ability to define signals as a bus and also identify timing reference signals for the bus. This is needed for both Controller and Memory components, and is comprised of a new IBIS file block with associated keywords. The Bus Definition classifies buses into three categories, Clock, Address, or Data. Though bus categorization information can be added to the IBIS file through a text editor, but it is highly recommended that Parallel Bus Analysis GUI is used to create the Bus Definition.

3.4 Pin Mapping

According to the IBIS specification, the [PinMapping] section is used to indicate the power and ground buses to which a given driver, receiver, or terminator is connected. It accepts the following parameters:

pulldown_ref, pullup_ref, gnd_clamp_ref, power_clamp_ref, ext_ref.

According the IBIS specification, the [PinMapping] section is optional, and may not exist in every IBIS file. If this section is not available in any IBIS file, Bus Parallel Bus Analysis is performed

assuming ideal power conditions. It is strongly recommended that a valid pin-mapping specification be obtained from the device manufacturer and included in the IBIS file.

3.5 IBIS File GUI

In this section, we will use the SystemSI user interface to open a template project, edit the controller block, and view the Bus Definition section of the controller IBIS file. A new bus will be added to the Controller. The subsequent changes to the IBIS file will be shown.

3.5.1 Open a Template Project

- 1. Launch SystemSI.
- 2. To open a new workspace, select File -- New.

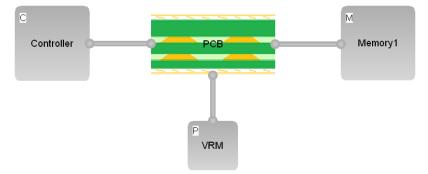
or

Click the New button.

The Select Module window opens.

Selec	Module ×
м	dule Name
P	allel Bus Analysis
S	ial Link Analysis
Т	tbench
	OK Cancel

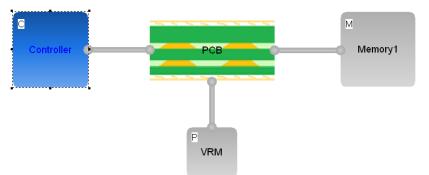
- 3. Select Parallel Bus Analysis.
- 4. Click OK.


The New Workspace window opens.

- 5. Select Create by Template.
- 6. Select data_bus_welem_vrm.

Ne	ew Workspace		×
	○ Create by setting ⊙ Create by template Ter	mplate Path: C:\Program Files\Sigrity\SpeedXP 12.0	D\Library\template\Sys
	Name	Path	Description
	addr_bus_sparam_4mem data_bus_sparam_2mem	C:\Program Files\Sigrity\SpeedXP 12.0 C:\Program Files\Sigrity\SpeedXP 12.0	
	data_bus_welem_vrm	C:\Program Files\Sigrity\SpeedXP 12.0	
	•	111	
	Name:		
1	Location: D:\simu\Template		
			OK Cancel

- 7. Enter a **Name** for the project.
- 8. Enter or browse a **Location**.
- 9. Click **OK**.


The Block diagram is created as follows.

This is a pre-constructed, ready to simulate, template consisting of a controller and a single memory device. IBIS models are defined, edited and linked to the devices. The PCB interconnects are coupled transmission line models consisting of HSPICE W-element components. There is also a VRM supply.

3.5.2 Editing the Controller IBIS

1. Double-click the **Controller** or **Memory** component.

2. In the **Property** dialog box that opens, click the **Load IBIS** button.

ock Name:	Controller			Tx OnDie Parasitics Package Parasitics Ignore VT Curv
Conn. Por	t Connect To	Block Name	Conn. Port	IBIS File: ASI166\1664\SSI_PBA\pba1\ssi_pba_ex.ibs Component: Controller
to_PCB		PCB	to_Controller	.subckt Controller_Controller + 2 3 15 17 18 19 20 21 22 23 32 33 42 + 43 51 52 62 64 67 69 75 77 80 82 85 + 87 94 96 99 101 104 106 111 113 116 118 + 1 36 5 38 *[MCP Begin] *[MCP Ver] 1.2 *[MCP Source] Cadence Design Systems, Inc. MCP Editor * *[REM] **[Connection] to_PCB *[Connection Type] *[Connection Type] *[Power Net5] *1 1 VDD
•	111		Þ	Load IBIS

3. View the IBIS model definition for this **Controller** component. In this window, the IBIS model file and component is specified, and the **Pin Mapping** and **Bus Definitions** for the model can be viewed and defined.

:\sipbatut\m	vysipba\ssi_pba_ex.ibs				Component : Controller						
Pin Mapping Bus Definition						Explicit IO Power a	nd Ground Terminal				
in	Pulldown	Pullup	GND Clamp	Power Clamp	Signal Name	Model Name	Bus Group				
		PWRBUS1			VDD	POWER					
0	GNDBUS1	PWRBUS1	GNDBUS1	PWRBUS1	RESET	DDR3_DQ34_N					
00	GNDBU52				¥55Q	GND					
01	GNDBUS2	PWRBUS2	GNDBUS2	PWRBUS2	DQ9	DDR3_DQ34_N	DataU				
02		PWRBUS2			VDDQ	POWER					
03		PWRBUS2			VDDQ	POWER					
04	GNDBUS2	PWRBUS2	GNDBUS2	PWRBUS2	UDQS	DDR3_DQS34	Timing Ref				
05	GNDBUS2				¥55Q	GND					
06	GNDBUS2	PWRBUS2	GNDBUS2	PWRBUS2	UDQ5#	DDR3_DQS34	Timing Ref				
07		PWRBUS2			VDDQ	POWER					
08		PWRBUS1			VDD	POWER					
09	GNDBUS1				¥SS	GND					
1					DNU	NC					

- 4. Click the file Browser in to see the IBIS files available in this template. Exit the file dialog without making any changes.
- 5. Click the **Component** pull-down to see the components in this IBIS file. There is one memory controller and a memory device model in this file. Again, no changes are necessary.

Component :	Controller	•
Exp	Memory Controller	

6. To edit the IBIS file, select the Edit IBIS button.

	Die	Dullianus	Dulla	CND Classe	Dames Classe	Const Massa	Mardal Name	Due Creare	1		
	Pin Mapping Bus Definition							[Explicit IO Power and G	round Termi	inals
	D:\sipbatut\pbarev	iew1\ssi_pba_ex.ibs					Compone	ent : Controller	•	Edit IB	815
ĺ	Load IBIS									- 0	Х

The IBIS file opens in AMM IBIS Editor. If required, you can modify the IBIS file, view IBIS curves, add die or package data and run golden Parser checks.

Vorkflow	x [IBIS ver]		* * * * * * * * * * * * * * * * * * *	*******	* * * * * * * * * * * * * * * * * * *	* * * * *	
BIS Editor	File name]	[IBIS ver]	5.0			1	
	File Rev]		ssi_pba_ex.ibs				
View/Edit IBIS File	Date]		1.0				
View IBIS Curves	[Source]	[Date]	October 24, 2012				
	[Notes]	=					
Add Die and/or PKG Circuits	[Disclaimer]	[Source]	Generic memory o				
	[Copyright]	[Notes] Created memory controller from a memory device					
Generate IBIS [Component] fro	froi I I (Component) Memory	[Disclaimer]	Just an example				
	Hat Icomboueurl wemory	[Copyright]	Copyright 2012 C	Cadence Design Sys	stems, inc. All 1	right	
Run Golden Parser Check	[Component] Controll						
	- 📄 [Model Selector] DQ						
Save IBIS File							
	🔤 [Model Selector] DQS	[Component]	Memorv				
Customize Workflow ×	▼ Model Selector] ADDR	[Manufacturer]		n Systems, Inc.			
	- 🕒 [Model Selector] CTRL	[Package]	cauence pesign	i Syscems, inc.			
		variable	typ	min	max		
	Imodel1 DDR3L DQ40	R pkg	1.0146	0.97286	1.0957		
	Model] DDR3L_DQ40_	L pkg	7.151e-9	6.591e-9	7.955e-9		
	Model] DDR3L DQ48	Cpkg	3.058e-12	2.634e-12	3.335e-12		
	Model] DDR3L DQ48						
	Model] DDR3L DQ\$40	[Pin]	signal name moo	lel name R pin	L pin	С	
		A1 VDDQ			POWER		
	Imodel] DDR3L_DQS40	A2 DQ13			DQ		
	🗄 🛃 [Model] DDR3L_DQS48	AD DOLE			50	Þ	
	Output						

7. For this module, no changes are required, so close the AMM IBIS Editor, without making any modifications.

Note that, by default, the **Explicit IO Power and Ground Terminals** check box is not selected.

Explicit IO Power and Ground Terminals

NOTE! *Section 2.3.2 Controller / Memory Block*, details the impact of selecting this dialog box.

8. Click the **Bus Definition** tab, to see the Buses that have been defined for this controller.

oad IBIS						- 🗆 ×	
D:\sipbatut\mys	;ipba\ssi_pba_ex.ibs			Component : Control	- Edit IBIS		
Pin Mapping Bus Definition Add Delete Explicit IO Power and Ground Terr							
Bus Type	Bus Group	Timing Ref	Edge Type	Signal Names	Clock		
AddCmd	Address	CLKOP / CLKON,	RiseEdge	A0, A1, A2, A3			
Data	DataL	LDQS / LDQS#	BothEdges	DQ0, DQ1, DQ			
Data	DataU	UDQS / UDQS#	BothEdges	DQ8, DQ9, DQ			

Add a new Bus Group by clicking Add.
 A new Bus Group is added.

ba\ssi_pba_ex.ibs			Component : Contro	ller	Edit IBIS
us Definition			Add De	lete Explicit IO (Power and Ground Terminals
Bus Group	Timing Ref	Edge Type	Signal Names	Clock	
Address	CLKOP / CLKON,	RiseEdge	A0, A1, A2, A3		
DataL	LDQS / LDQS#	BothEdges	DQ0, DQ1, DQ		
DataU	UDQS / UDQS#	BothEdges	DQ8, DQ9, DQ		
		BothEdges			
	Address DataL	us Definition Bus Group Timing Ref Address CLK0P / CLK0N, DataL LDQS / LDQS#	us Definition Bus Group Timing Ref Edge Type Address CLKOP / CLKON, RiseEdge DataL LDQS / LDQS# BothEdges DataU UDQS / UDQS# BothEdges	us Definition Add De Bus Group Timing Ref Edge Type Signal Names Address CLK0P / CLK0N, RiseEdge A0, A1, A2, A3 Datal LDQ5 / LDQ5# BothEdges DQ0, DQ1, DQ DataU UDQ5 / UDQ5# BothEdges DQ8, DQ9, DQ	us Definition Add Delete Explicit IO I Bus Group Timing Ref Edge Type Signal Names Clock Address CLK0P / CLK0N, RiseEdge A0, A1, A2, A3 Datal LDQ5 / LDQ5# BothEdges DQ0, DQ1, DQ DataU UDQ5 / UDQ5# BothEdges DQ8, DQ9, DQ

10. Each field in the new bus definition may be edited, some with pull down menus, others by typing, and yet others by selecting net names.

Enter the Bus Group as **Calibration**. On completion, the bus definition should be same as shown in the following figure.

Bus Type	Bus Group	Timing Ref	Edge Type	Signal Names
AddCmd	Address	CLKOP / CLKON,	RiseEdge	A0, A1, A2, A3
Data	DataL	LDQS / LDQS#	BothEdges	DQ0, DQ1, DQ
Data	DataU	UDQS / UDQS#	BothEdges	DQ8, DQ9, DQ
Data	Calibration	CLK1P / CLK1N	BothEdges	BAO, BA1, BA2

For data buses, you can also specify the Clock. This can be same as the Timing Reference signal of the Ctrl or the AddCmd bus groups.

11. Add the clock signal as CLK0P/CLK0N, as shown in the following figure.

baca	DUCUL	codal coda.	Docheogos		
Data	DataU	UDQS / UDQS#	BothEdges	DQ8, DQ9, DQ	
Data	Calibration	CLK1P / CLK1N	BothEdges	BAO, BA1, BA2	CLKOP / CLKON

You can also modify the existing group.

12. Add a clock signal, CLK0P/CLK0N, to the DataL bus, as shown in the following figure.

Bus Type	Bus Group	Timing Ref	Edge Type	Signal Names	Clock
AddCmd	Address	CLKOP / CLKON,	RiseEdge	A0, A1, A2, A3	
Data	DataL	LDQS / LDQS#	BothEdges	DQ0, DQ1, DQ	CLKOP / CLKON
Data	DataU	UDQS / UDQS#	BothEdges	DQ8, DQ9, DQ	

- 13. Click **OK** to accept the changes in the Bus Definition tab.
- 14. In the Verification dialog, click Update to back-annotate changes to the IBIS file.

Update IBIS File	×
The contents in the IBIS file 'ssi_pba_ex.ibs' have been modified.	
If you want to save the changes into the current IBIS file, click UPDATE. If you want to save these changes into a new file, click COPY.	
Update Copy Cancel	

The new Bus can be viewed in the ssi_pba_ex.ibs file, in the Controller Definition section, just after the Pin Mapping.

****************** [Component Type] [Bus Type] BusGroup TimingRef EdgeType MinTransmitSetup MinTransmitHold SignalName	<pre>***Component Bus Definitions ************************************</pre>
 Eus Type] BusGroup TimingRef EdgeType Clock	Data DataL LDQS / LDQS# BothEdges CLKOP / CLKON
MinTransmitSetup	0.3333UI
MinTransmitHold	0.3333UI
MaxReceiveSkew(+)	0.25UI
MaxReceiveSkew(-)	0.25UI
SignalName	DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7
[Bus Type]	Data
BusGroup	DataU
TimingRef	UDQS / UDQS#
EdgeType	BothEdges
MinTransmitSetup	0.3333UI
MinTransmitHold	0.333UI
MaxReceiveSkew(+)	0.25UI
MaxReceiveSkew(-)	0.25UI
SignalName	DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15
[Bus Type]	Data
BusGroup	Calibration
TimingRef	CLK1P / CLK1N
EdgeType	BothEdges
Clock	CLK0P / CLK0N
SignalName	BAO BA1 BA2

NOTE: The IBIS model for the Memory component has similar elements. The reader is encouraged to explore the details of the Memory component. Since editing functionality is identical to that for the Controller, details are not reviewed here.

3.5.3 Pin Mapping

The Pin Mapping section is required by SystemSI for simulations with non-ideal power, for example to consider SSN effects. This section is considered optional in the IBIS specification, and some components do not have Pin mapping defined. In such cases, SystemSI automatically defaults to an "Ideal Power" mode for all simulations. To get access to all of the powerful features of the tool, including non-ideal power simulation, it is strongly recommended that a valid Pin Mapping section be added to the IBIS file prior to use in SystemSI.

This section, details the Pin Mapping definition of the controller.

1. From the **Load IBIS** window, view the **Pin Mapping** tab for the Controller.

:\sipbatut\n	nysipba\ssi_pba_ex.ibs				Compo	onent : Controller		 Edit IBIS
in Mappin	g Bus Definition					0	Explicit IO Power an	d Ground Terminals
n	Pulldown	Pullup	GND Clamp	Power Clamp	Signal Name	Model Name	Bus Group	
		PWRBUS1			VDD	POWER		
D	GNDBUS1	PWRBUS1	GNDBUS1	PWRBUS1	RESET	DDR3_DQ34_N		
00	GNDBU52				¥55Q	GND		
01	GNDBU52	PWRBUS2	GNDBUS2	PWRBUS2	DQ9	DDR3_DQ34_N	DataU	
02		PWRBUS2			VDDQ	POWER		
03		PWRBUS2			VDDQ	POWER		
D4	GNDBU52	PWRBUS2	GNDBU52	PWRBUS2	UDQS	DDR3_DQ534	Timing Ref	
05	GNDBU52				¥55Q	GND		
D6	GNDBU52	PWRBUS2	GNDBUS2	PWRBUS2	UDQS#	DDR3_DQ534	Timing Ref	
07		PWRBUS2			VDDQ	POWER		
08		PWRBUS1			VDD	POWER		
09	GNDBUS1				¥SS	GND		
l					DNU	NC		

The Pin Mapping section contains important information required for parallel bus analysis.

- The references, including Pullup, Pulldown and Gnd/Pwr rails for the Bus Signals, are identified in the Pin Mapping. Without this information, Parallel Bus Analysis assumes Ideal Power and Ground for all simulations.
- The Pin Name to Signal Name mapping is shown. These pin names are used to connect components together in Parallel Bus Analysis.

For details, see the section on MCP Connectivity in Chapter 1.

- The relevant bus group (assuming the bus definitions are already specified) is listed.
- 2. To close the Pin Mapping without saving, click **Cancel**.
- 3. Save and close the work space.

3.5.4 Supported IBIS Keywords

Sigrity SPDSIM currently parses the following data sections from an IBIS file:

[Component]	[Voltage Range]	[On]	[Define Package Model]
[Driver Schedule]	[Pullup Reference]	[Off]	[Manufacturer]
[Pin]	[Pulldown Reference]	[R Series]	[Number Of Sections]
[Pin Mapping]	[POWER Clamp Reference]	[L Series]	[Number Of Pins]
[Package]	[GND Clamp Reference]	[R1 Series]	[Pin Numbers]
[Package Model]	[Pulldown]	[C Series]	[Model Data]
[Series Pin Mapping]	[GND_clamp]	[Lc Series]	[End Model Data]
[Series Switch Groups]	[GND Clamp]	[Rc Series]	[Resistance Matrix]
[Model]	[POWER_clamp]	[Series Current]	[Inductance Matrix]
[Model Selector]	[POWER Clamp]	[Series MOSFET]	[Capacitance Matrix]
[Submodel]	[Rgnd]	[Ramp]	[Row]

[Submodel Spec]	[Rpower]	[Rising Waveform]	[Bandwidth]
[GND Pulse Table]	[Rac]	[Falling Waveform]	[End Package Model]
[POWER Pulse Table]	[Cac]	[Composite Current]	[end]
[ISSO PU]	[ISSO PD]		

4 Design Entry

4.1 Overview

SystemSI provides an intuitive schematic entry GUI for capturing system designs as block diagrams. You can base your designs on pre-defined templates shipped with the tool, or you can use a design wizard that comes with Parallel Bus Analysis, to create your designs. In this chapter, both the methods of creating new designs are explained.

NOTE!	Chapters 4 through 9 go through a sequential Bus system design session, from design entry through simulation and data processing. It focuses on an actual DDR3 design, with Controller, Memory devices, PCB and VRM. The user can go through each chapter sequentially, to get a comprehensive understanding of the SystemSI – Parallel Bus Analysis flow, or they may choose to go though selected chapters as needed.
-------	---

Design files are saved for each chapter in the \Samples\SystemSI\Parallel Bus Analysis\Tutorial directory, to allow users to simply open specific files, and review exercises for those sections. In the installation hierarchy, the Tutorial directory is available at:

<INSTALL_DIR>\SpeedXP\Samples\SystemSI\Parallel Bus Analysis\Tutorial

4.2 Parallel Bus Analysis Templates

Two design templates are available, one that uses S-parameter model for PCB, and one that uses W-element model for the PCB. The W-element template, *data_bus_welem_vrm* was covered in <u>Chapter 2</u>. Refer to this chapter for an overview of the W-element model template.

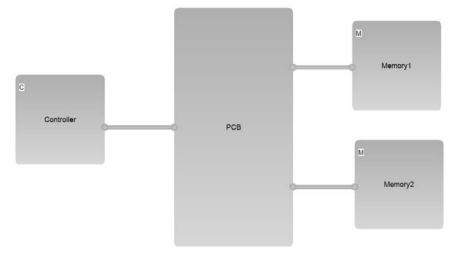
This section demonstrates how to create a design using the S-parameter template.

- 1. Launch SystemSI.
- 2. To open a new workspace, select File -- New.

or

Click the New button.

The Select Module window opens.


S	elect Module	×
	Module Name	
	Parallel Bus Analysis	_
	Serial Link Analysis	
	Testbench	
	OK Cancel	

- Select Parallel Bus Analysis, and click OK. The New Workspace window opens.
- 4. Select Create by Template.
- 5. Select data_bus_sparam_2mem.

 Create by setting Create by template 1 	emplate Path: C:\Program Files\Sigrit	:y\SpeedXP 12.0\Library\template\Sys
Name	Path	Description
addr_bus_sparam_4mem	C:\Program Files\Sigrity\Spee	edXP 12.0
data_bus_sparam_2mem	C:\Program Files\Sigrity\Spee	
data_bus_welem_vrm	C:\Program Files\Sigrity\Spee	edXP 12.0
•	111	
lame:		
iame:		
ocation: D:\simu\Template		

- 6. Enter a **Name** for the project. For this tutorial, specify name as myproj.
- 7. Enter or browse a **Location**.
- 8. Click OK.

The Block diagram is created as follows.

This design differs from the W-element template in several ways. First, the PCB is defined by an S-parameter extraction completed using Sigrity PowerSI. Second, it has two memory devices, but no VRM defined.

9. Double-click the **PCB** block to open its **Property** dialog.

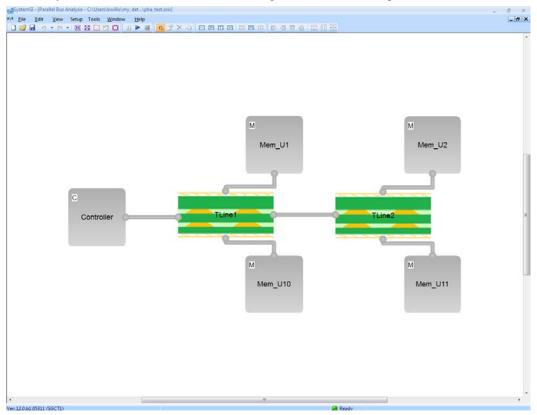
File Name: D:↓	ASI166\1664\SSI_PBA\myproj\DDR2	s2 Sub-circuit Name:	DDR2_s2k_sample1_bnp
S Parameter File:	D:\ASI166\1664\SSI_PBA\myproj	DDR2_s2k_sample1.bnp	View S Parameter
.SUBCKT	DDR2_s2k_sample1_bnp		
+	U20_AF16		-
+	U20_AB		
+	U20_AE17		
+	U20_AH17		
+	U20_AG17		
+	U20_AG18		
+	U20_AH18		
+	U20_AD18		
+	U20_AF19		
+	U20_AH19		
+	U20_AD19		
+	U20_AG20		
+	U20_AH20		
+	U20_AH21		•
Extract BBS Mod	del Load BBS Model	Launch MCP Header Editor.	Edit Sub-circuit Definition

10. Click **Edit Sub-circuit Definition** to see the S-parameter circuit model netlist that is created by PowerSI for the board.

ile: D:\sipbatu	ut\myproj\DDR2_s2k_sample1_bnp.ckt	Sub-circuit Name: D)DR2_s2k_sample1_bnp	-
.SUBCKT	DDR2_s2k_sample1_bnp			
+	U20_AF16			
F	U20_A3			LE
F	U20_AE17			
-	U20 AH17			
-	U20_AG17			
-	U20_AG18			
-	U20_AH18			
-	U20 AD18			
-	U20_AF19			
-	U20_AH19			
	U20_AD19			
-	U20_AG20			
	U20_AH20			
	U20_AH21			
-	U20_AE21			
	U20_AH22			
-	U20_AD21			
-	U20_AG10			
F	U20_AH9			
	-			
			Load MCP OK	Cancel

Continue to explore this Template by editing components and simulating, as was done in Chapter 1 for the W-element template.

In this case, the **Analysis Options...** window looks different from the former. It has a section that can be used to specify <u>Ranks</u>.


11. Select **1** in the **# of Ranks** drop-down list, and click in the check box before **Rank1** to enable it.

Bus Type: Dat	а		Ideal Po	wer
Corner Fast Typ Slow Fast/Slow Slow/Fast		Direct	rite	
Active Rank: Rank Name		Ranks: y Blocks	-	-
Rank1			2 emory2	

12. Save the settings and simulate the design.

4.2.1 Rank Definition

For Data bus topologies, memory blocks can be organized into "ranks". A rank is simply a group of memory blocks that are active or inactive all together. Take the example below:

In this case, data signals DQ[7:0] from the controller are connected to Mem_U1 and Mem_U10, and DQ[15:8] are connected to Mem_U2 and Mem_U11. This allows Mem_U1 and Mem_U2 to be grouped as **Rank1**, and Mem_U10 and Mem_U11 to be grouped as **Rank2**. In the case of a Write simulation for this data bus, either **Rank1** or **Rank2** will be active (i.e. receiving on a Write), while the other rank will be placed in the Standby mode. Grouping memory blocks into ranks enables more efficient simulations to be run, eliminating unnecessary combinations of active/inactive memory blocks, and reducing the number of overall simulations to be run.

Active Rank allows a single Data Bus simulation to contain multiple active memory blocks.

- 1. The memory blocks in an active rank will be active together.
- 2. If more than one ranks are checked as active, the tool will do multiple simulations for active rank sweeping: each simulation will only have one active rank while others will be considered as standby.

When a number is selected from the **# of Ranks** list, multiple ranks of the selected number will be added to the **Rank Name** column automatically. (The default drop-down list **# of Ranks** contains the max number which is the number of memory blocks.)

Active Rank:	# of Ranks:	2	•
Rank Name	Memory Blocks	1	
🗹 Rank1	Memory1, M	3	
📃 Rank2	Memory3, M	4	
			-
			-
L		Auto Assig	ŋn

- 3. If the selected # is 1, **Rank1** will contain all memory blocks.
- 4. If the selected # is max, each rank will contain one memory.
- 5. If the selected # is neither 1 nor max, the ranks will be assigned randomly.

If the user clicks the **Auto Assign** button, the tool will automatically assign the memory blocks based on Frequency Response.

User can always manually assign the ranks in **Rank Editor** by double-clicking a specific rank.

Available Memory Block		Selected Memory Block
Memory1		Memory1
Memory2		Memory2
Memory3		
Memory4	>>	

You can:

- Select a memory block in the Available Memory Block column and click >> to add it to the Selected Memory Block column.
- 7. Use the **X** button to delete the selected memory block.
- 8. Use the Up arrow(1) or down arrow (1) button to move up or down the memory block.

	The above instruction on the four-memory data bus is only an explanation of the function of SystemSI – Parallel Bus Analysis . This tutorial will not go
NOTE!	into this exercise. The remainder of this Chapter and the subsequent sections of
	this Tutorial go into a new design that has similar components, including an S-
	parameter based PCB model.

4.3 Parallel Bus Analysis Wizard

In this section, we'll create a new design using the Wizard. This design will be used for subsequent exercises through Chapter 9.

- 1. Launch SystemSI.
- 2. To open a new workspace, select **File > New**

or

Click the New button.

The Select Module window opens.

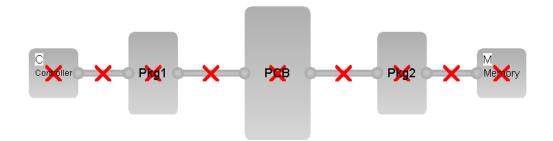
Se	elect Module	х
	Module Name	
	Parallel Bus Analysis	
	Serial Link Analysis	
	Testbench	
	OK Cancel	

- 3. Select Parallel Bus Analysis.
- 4. Click **OK**.

The New Workspace window opens.

5. Select **Create by setting**.

New Workspace		×
 Create by setting Create by template Ter 	nplate Path: SI\Update4\speedxp\ibrary\template	SystemSI ParallelBus
Name	Path	Description
addr_bus_sparam_4mem data_bus_sparam_2mem data_bus_welem_2rank data_bus_welem_vrm pba_simple_em	D:\Cadence\SPB_16.6\ASI\Update4\sp D:\Cadence\SPB_16.6\ASI\Update4\sp D:\Cadence\SPB_16.6\ASI\Update4\sp D:\Cadence\SPB_16.6\ASI\Update4\sp D:\Cadence\SPB_16.6\ASI\Update4\sp	
	111	
Name: Location: D:\ASI166\1664\SS	I_PBA	···
		OK Cancel


- 6. Enter a **Name** for the project.
- 7. Enter or browse a **Location**.
- 8. Click OK.

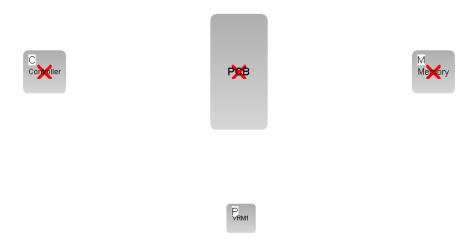
The New Project dialog box displays.

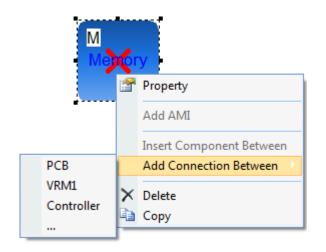
New Project ×
System Configuration
On-card
O Multi-board 1
Backplane
Number of Memory Devices:
Power Ideal
O Non-ideal
OK Cancel

9. For this tutorial, use the default selections in the **New Project** dialog, and click **OK**.

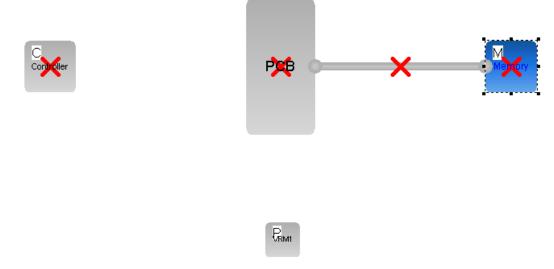
Block diagram is created. Red cross (**X**) on each component block indicates that none of the components have models defined at this point. As a result, "**Connections**" are also all **undefined**, as indicated by the red "**X**".

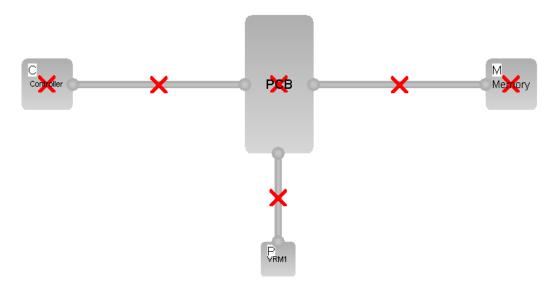
10. Delete the Pkg1 and Pkg2 blocks.To delete the blocks, select the blocks and click the Delete button.Note that along with the Pkg. blocks, the connections are also deleted.




11. Add a **VRM** Component by clicking the "P" icon in the toolbar.

5	P	ī	:⊠:	
	A	dd V	RM B	lock


12. Place it below the PCB.

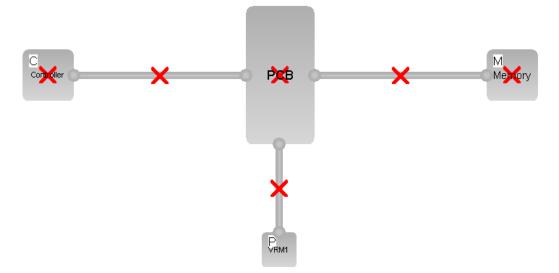

- 13. Add Connections between each component and the PCB.
 - a) Right-click on the **Memor**y component, and from the popup menu, select *Add Connection Between -- PCB*.

The Connection is made with a Red "X" as shown. The Red Cross (X) on the connection indicates that the connection is not yet complete as the ground signals are not connected.

14. Similarly, connect **VRM and PCB** blocks, and **Controller and PCB** blocks. The topology will look like this:

15. Save this design.

Continue to *Chapter 5* to specify the IBIS models for Controller and Memory components.


5 Assigning Device Models

5.1 Overview

This chapter demonstrates the procedure for assigning IBIS models to memory controller and memory devices. SystemSI uses IBIS models, and allows both behavioral and transistor-level IO models for these devices. As discussed in Chapter 3, Parallel Bus Analysis adds certain extensions, including keywords, to these IBIS files. And as we will see, Parallel Bus Analysis automates connection of these IBIS files with other components in the system.

5.2 Design Files

The design created using the Design Wizard in *Chapter 4.3* is the starting point for this exercise.

If you have performed the tasks covered in Chapter 4, you can continue with same design files. However, if you are starting from Chapter 5, open the chap5.ssix file located at <INSTALL_DIR>\SpeedXP\Samples\SystemSI\Parallel Bus Analysis\Tutorial\chap5. This directory also contains the IBIS model file for the Controller and the Memory blocks.

5.3 Controller Model

5.3.1 Assign the Controller IBIS Model

In this section, we will assign the Controller IBIS file to the Controller block.

1. Double-click the Controller block in the schematic, to open the Property dialog box.

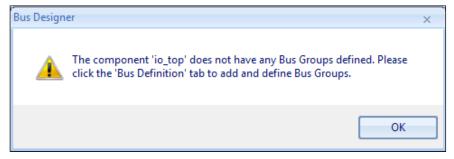
roperty						_ 🗆 ×
Block Name:	Controller			Тх	DnDie Parasitics Package Parasitics	Ignore VT Curves
Conn. Port	Connect To	Block Name	Conn. Port	IBIS File:	Component:	
	• -X -•	PCB				
	111		•			Load IBIS
Connection						
					OK Cano	el <u>A</u> pply

2. Click Load IBIS....

The Load IBIS dialog box displays.

ad IBIS					
		Compone	nt :	•	Edit IBIS
Pin Mappi	ing Bus Definition		[Explicit IO Power ar	nd Ground Term
Pin	Pulldown	Pullup	GND Clamp	Power Clamp	Signal Name
•		111			
Filter				ОК	Cancel
rater					

- Select the IBIS file by clicking the Browse button (......).
 For this tutorial, the IBIS file is available in the chap5 folder in the Tutorial directory.
- 4. Select the ssi_pba_ex.ibs file, and click Open.


Select IBIS File				×
😋 🔍 🗢 🚺 « Tutorial 🕨	chap5 🕨	 +	Search chap5	م
Organize 👻 New folder				•
SpeedXF	Name history result ssi_pba_ex.ibs	Date modified 10/30/2013 4:33 PM 10/4/2013 1:40 PM 9/9/2013 10:26 PM	Type File folder File folder IBS File	Size 7,244 KB
📕 125	(
File <u>n</u> am	ie:	– II	BIS File(*.ibs) <u>O</u> pen	Cancel

The IBIS model is opened with the Pin Mapping tab selected.

5. From the **Component** drop-down list, select **Controller**.

For this example, the IBIS model has the Pin Mapping from the device manufacturer. However, because the Bus Definition is not yet complete, the Pin Mapping is not fully defined, with only 1 bus group shown.

If you do not have a bus defined, following message is displayed.

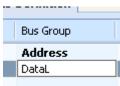
In the next section, we will create the bus definition for the Controller block.

5.3.2 Controller Bus Definition

In this section, we will define two Data buses, made up of some of the DQ signals in the Controller.

1. Click the **Bus Definition** tab for the IBIS Controller.

Pin Mapping Bus Definition				Add Delete Explicit IO Power and Ground Terminals			
Bus Type	Bus Group	Timing Ref	Edge Type	Signal Names	Clock		
AddCmd	Address	CLKOP / CLKON,	RiseEdge	A0, A1, A2, A3			


2. Click **Add** to create a new bus group.

A new Bus with default Bus Type **Data** and Edge Type **BothEdges** is created. We will define each of the fields that define this bus in the dialog box.

3. Click the **Data** Bus Type, to get the drop-down selection showing the other types of buses, **AddCmd** and **Ctrl**.

Bus Type	
Data	•
Data	
Ctrl	
AddCmd	

- 4. Leave the Bus Type as **Data**. We will define two Data Buses for this system. Additional buses are present in the IBIS file, but only two will be defined for this Tutorial.
- 5. Enter **DataL** in the Bus Group by typing the name in the empty field box.

6. Next, define the Timing Reference. Click the **Timing Reference** field.

The Timing Ref dialog box displays, listing all the signals available in the IBIS file.

- Select the pin 77 connected to the LDSQ signal.
- Right-click on the pin **75** connected to the **LDSQ**# signal.

Pin	🛆 Signal	A 100		Positive Signal	Negative Signal	
46	CS					
47	ODT					
49	CKE					
51	CLKON					
52	CLKOP					
55	CAS					
58	RAS					
62	DQ4		>>			
64	DQ6					
67	DQ7	-				
69	DQ5					
⊖ <mark>75</mark>	LDQ5#					
9 77	LDQ5		5			
80	DQ1					
82	DQ3					
85	DQ2					
87	DQ0					
it-click to select	a positive signal. Right-click to s	elect a negative signa	si.			

- Click the double arrow button \triangleright .
- Click OK.
- 7. Define the Signals that make up the bus. For the DataL bus, add first 8 DQ signals.
 - Click on the Signal Names grid.
 - In the Signal dialog box, to sort the list by signal names, click the Signal field.
 - From the dialog box, select the **DQ0... DQ7** signals. You can use the Signal Filter text box to filter the DQ signal.

Pin	Signal	Δ	
87	DQ0		
80	DQ1		
85	DQ2		
82	DQ3		
62	DQ4		
69	DQ5		
64	DQ6		
67	DQ7		
94	DQ8		
101	DQ9		
96	DQ10		
99	DQ11		
118	DQ12		
111	DQ13		
116	DQ14		
113	DQ15		

• Select the check box next to the selected signals, and click OK. The **DataL** bus is now setup as shown in the following figure.

Pin Mapping Bus	Definition			Add Delete	Explicit IO Power	and Ground Terminals
Bus Type	Bus Group	Timing Ref	Edge Type	Signal Names	Clock	
AddCmd	Address	CLKOP / CLKON,	RiseEdge	A0, A1, A2, A3		
Data	DataL	LDQS/LDQS#	BothEdges	DQ4, DQ6, DQ		
						OK Cancel

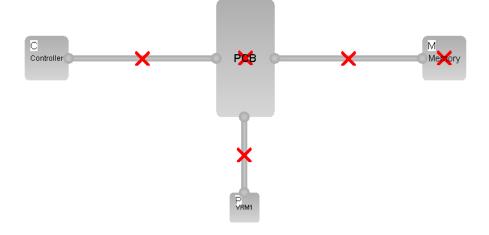
- 8. Repeat Steps 2 through 8 above, to create the second Data Bus with following specifications.
 - Name Group "DataU"
 - EdgeType "BothEdges"
 - Timing Ref Signals "UDQS/UDQS#"
 - Signal Names "DQ8 thru DQ15"

Following figure shows the **Bus Definition** window after you have successfully created the DataU bus group.

Lo	ad IBIS						- 🗆 ×
	D:\sipbatut\chap5\s	si_pba_ex.ibs		Comp	onent : Controller		Edit IBIS
	Pin Mapping Bus	Definition			Add Delete	Explicit IO Powe	r and Ground Terminals
	Bus Type	Bus Group	Timing Ref	Edge Type	Signal Names	Clock	
	AddCmd	Address	CLKOP / CLKON,	RiseEdge	A0, A1, A2, A3		
	Data	DataL	LDQS / LDQS#	BothEdges	DQ4, DQ6, DQ		
	Data	DataU	UDQS / UDQS#	BothEdges	DQ9, DQ13, D		

NOTE!	If required, you can specify the Clock signal for the Data bus.
-------	---

9. Click **OK** to close the Load IBIS dialog box.


The Update IBIS File dialog appears.

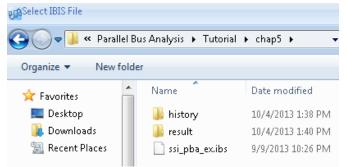
ſ	Jpdate IBIS File	×
	The contents in the IBIS file 'ssi_pba_ex.ibs' have been modified.	
	If you want to save the changes into the current IBIS file, click UPDATE. If you want to save these changes into a new file, click COPY.	
	Update Copy Cancel	

10. Click **Update** to save changes to the IBIS file.

The Controller IBIS file is now modified.

6. Click Apply to save changes made in the Property dialog box.

The Red cross on the Controller block is removed, indicating that an IBIS model is attached to the Controller Block.


5.4 Adding Memory Device Models

The procedure for assigning IBIS models to memory devices is similar to that for the controller. In this exercise, the Memory component IBIS file has already been defined with correct Pin Mapping. The Bus Definition has not been created, and will be defined in this section of the tutorial.

- 1. Double-click the Memory block.
- 2. Click Load IBIS... in the dialog box that opens.

Rx	OnDie Parasitics Package Parasitics
IBIS File:	Component:
	Load IBIS

- 3. In the Load IBIS dialog box, select IBIS file by clicking \square .
- 4. In the File Manger, navigate to the Tutorial directory, and double-click the *ssi_pba_ex.ibs* file.

5. From the Component drop-down list, select Memory.

The contents of the file are loaded in the dialog box.

By default, the Pin Mapping information is displayed for the Memory component

6. Select the **Bus Definition** tab, to view the bus definitions available.

Two buses have been added to match the Controller Data buses defined in the previous section. The Bus details are:

- First Bus:
 - ➢ Name Group "DataL"
 - EdgeType "BothEdges"

- ➢ Timing Ref Signals "LDQS/LDQS#"
- Signal Names "DQ0 thru DQ7"
- Second Bus
 - ➢ Name Group "DataU"
 - EdgeType "BothEdges"
 - ➤ Timing Ref Signals "UDQS/UDQS#"
 - ➢ Signal Names "DQ8 thru DQ15"

The following figure shows the Bus Definition window.

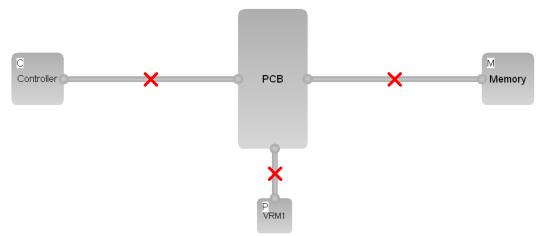
Pin Mapping Bus Definition			Add Delete	Explicit IO Power and	d Ground Terminals	
Bus Type	Bus Group	Timing Ref	Edge Type	Signal Names	Clock	
AddCmd	AddCmd::CK	СК / СК#	RiseEdge	A0, A1, A2, A3		
Data	DataL	LDQS / LDQS#	BothEdges	DQ0, DQ1, DQ		
Data	DataU	UDQS / UDQS#	BothEdges	DQ8, DQ9, DQ		

- 7. Click **OK** to save your changes and to close the Load IBIS dialog box.
- 8. To Update the IBIS file, click **Update**.

NOTE!	Bus names and Signal names for Controller and Memory are local to the IBIS file, and do not have to match each other, nor do they have to match the names in other components, including the Controller. Pin names, however, are used to automate connectivity between components that have a physical connection. The signal/pin mapping is addressed in the block connections, which will be covered in <i>Chapter 8</i> on MCP connectivity.
-------	---

We have now completed the specification of the Controller and Memory devices. In the next chapter, we will consider how to specify the PCB component.

6 Interconnect Models


6.1 Introduction

Interconnect components including Printed Circuit Boards (PCBs) and packages, are defined in SPICE netlist definitions. These may be circuit models including lumped elements and distributed transmission lines, W-element models, or S-parameter models in either Touchstone or Sigrity BNP format. Models can be created within Parallel Bus Analysis using an integrated layout extraction utility that can use a variety of extraction engines. Sigrity PowerSI board and package modeling tool is integrated with Parallel Bus Analysis to allow easy extraction of full boards and packages, including non-ideal power and ground nets.

In this chapter, we will see how to assign a CKT file describing a PCB, to the block diagram, and will view the contents of the SPICE file. We will also go through a sample extraction of an S-parameter description of a board using Sigrity PowerSI, and see how the extracted model file is integrated with Parallel Bus Analysis.

6.2 Design Files

The design is the same one that was edited in Chapter 5. The block diagram has models defined for the Controller and Memory blocks. In this chapter, we will extract and assign a model to the PCB block.

If you have performed the tasks covered in Chapter 5, you can continue with same design files. However, if you are starting from Chapter 6, open the chap6.ssix file located at <INSTALL_DIR>\SpeedXP\Samples\SystemSI\Parallel Bus Analysis\Tutorial\chap6. This directory also contains the IBIS model file for the Controller and Memory.

The Tutorial folder contains the PCB file in SPD format for the interconnect model extraction.

6.3 PCB Model Generation

In this section, we will create a model for a DDR3 PCB bus using Sigrity PowerSI simulator. The design file for the PCB bus will be opened and reviewed in PowerSI, and a simulation will be performed. The result of the PowerSI simulation is an S-parameter model, and a SPICE netlist that has the model connection information (MCP) embedded. This will be reviewed in Parallel Bus Analysis.

A simple package model, using a different SPICE interconnects type, will be called in Parallel Bus Analysis, and associated with the Pkg1 component.

NOTE!	PowerSI is a physical board and package simulator, that uses Sigrity patented solution technology to quickly and accurately model high speed interconnects. Both signal integrity and power integrity effects are accurately modeled on parallel bus topologies. For more information, see the PowerSI material available on <u>www.cadence.com</u> .
-------	---

6.3.1 PCB Block Editing

Double-click the PCB block to view its properties. By default, the Connection tab is visible.

Block Name: PCB	Connect To	Block Memory	Block Connection	
Connection	• × •			
		Memory		
			to_PCB	
		VRM1	vrm_power	
	• X ••	Controller	to_PCB	
Connection Layout E	Extraction			

This tab shows information about the connections between the PCB block and other blocks. There are three connections, one each, to the Controller, Memory and VRM. None of the connections have been defined, so the invalid connection is indicated by the red X. Connection details will be covered in *Chapter 8* of this Tutorial.

6.3.1.1 Layout Extraction Tab

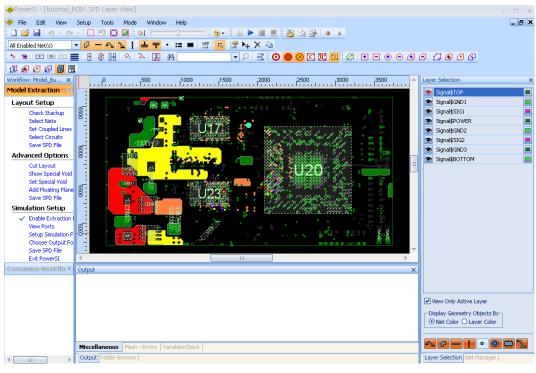
The second tab in the Property window is the Layout Extraction tab. This tab will be used to perform simulation on the PCB model, using PowerSI. In this section, we will open the PCB design in Sigrity PowerSI modeling tool. We will then simulate the design to extract a bus model, and use the resulting S-parameter model for this PCB block.

1. Click the **Layout Extraction** tab.

Property	
File Name:	
Extraction Engine:	▼ … Launch
Command-line Switches:	
Connection Layout Extraction	

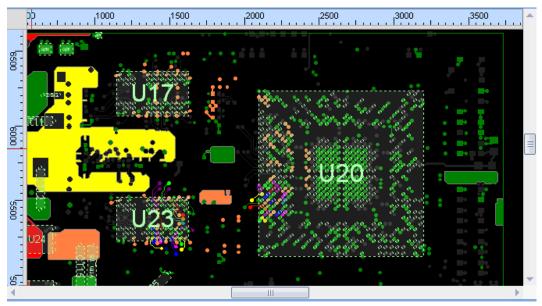
- 2. Click the first it pick the PCB design File.
- 3. Select file: *Tutorial_PCB1.spd*.
- 4. Click the pull-down arrow next to the Extraction Engine to pick **PowerSI** as the Extraction Engine.

ł	Property			
	File Name D:\sipba	tut\final1\tutorial_PCB1.SPD		
	Extraction Engine:	I – .	Launch	F
	Command-line Switc	PowerSI (13.0.2.01062) Speed2000 Generator (13.0.2.010		Ĵ
		Speed2000 Generator (13.0.2.011		_


5. Click Launch.

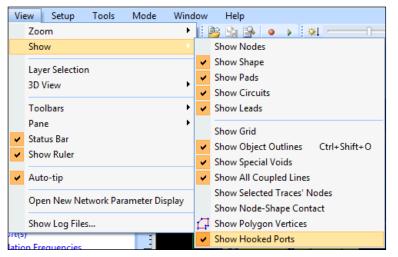
Alternatively, you can launch PowerSI outside of SystemSI and complete the steps listed in the next section.

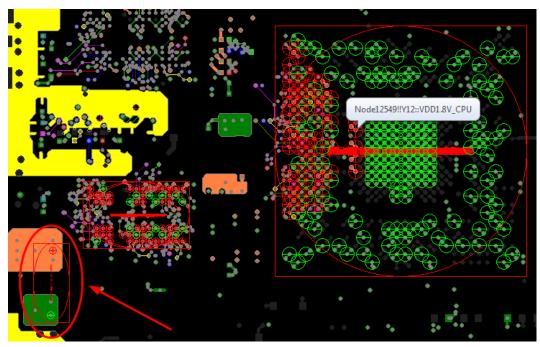
NOTE	Other tools may be used for interconnect model extraction, but PowerSI is the preferred modeling tool. In general, any tool that can create SPICE compatible
NOTE!	interconnect models, including S-parameters, could theoretically be used. The critical model connection is automated when using PowerSI.


6.3.2 PowerSI Model Extraction

PowerSI opens with the design, as shown in the following figure.

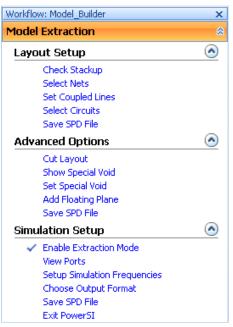
NOTE! This design was edited, setup and preliminary simulations performed in PowerSI previously. We will review part of this setup, but details of the PowerSI simulation are beyond the scope of this document. Please contact Cadence support for more information about it, and PowerSI in general.


- 1. In the Toolbar in PowerSI, click the Select Circuits tool button () to display the circuits in the PCB design.
- 2. Now click , to zoom in on part of the window.
- 3. Zoom in on the middle part of the PCB, with the largest components, U23 and U20.


4. The DDR3 bus on this board connects the memory controller, **U20** with two DDR3 devices, **U17** and **U23**. For this tutorial, we will only simulate the Data Bus connecting **U20** and **U23**.

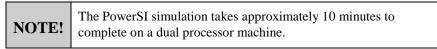
The PowerSI simulation simulates this bus for its S-parameter performance over frequency.

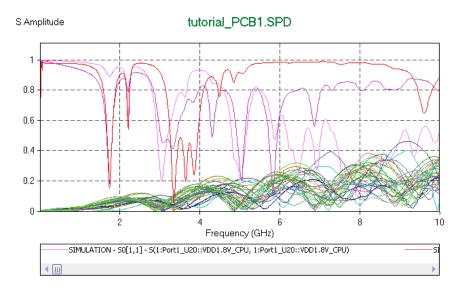
5. To see the Port Locations for the S-parameters, from the View menu, choose Show -- Show Hooked Ports.


The ports on each of the data lines including strobe are shown on the controller (U20 – right side) and DRAM (U23 – middle) components. Positive port terminals are displayed as **Red** "+" symbols, and negative terminals are **Green** "-" symbols.

The port in the Bottom left side is where the 1.8 Volt DDR power supply for the PCB. This voltage regulator module (VRM) port is circled in Red.

There are a total of 39 ports defined on the PCB.


6. The Frequency range for the S-parameter simulation can be viewed by clicking the **Setup Simulation Frequencies** command on the left side Workflow Manager:


The simulation frequencies should be set as shown below, with a starting frequency of 1 KHz, Ending frequency of 10 GHz and Adaptive frequency sweeping.

Starting Freq.	Ending Freq.	Sweeping Mode	Freq. Increment	Points/Decade
KHz	10 GHz	Adaptive		

7. To Start the PowerSI simulation, click the Play icon 🕨.

Upon completion, the S-parameters are automatically plotted in a Network parameter display window.

The results of the PowerSI simulation are automatically saved.

8. To close PowerSI, select File -- Exit.

6.3.3 Assign PowerSI Model

Two files are created by PowerSI, a 39-port BNP file that has the S-parameter data in Sigrity compact binary format, and a CKT file with the SPICE netlist that calls this S-parameter data model, and has the connection syntax (MCP) defined.

With the PCB model created, we can assign the correct data to the block diagram component in Parallel Bus Analysis.

1. In the **Property** dialog for the PCB block, on the right side, click the **File Name** icon.

e Name: cuments for System SI\tutorial\Parallel Bus Analysis\Tutorial\tutorial_PCB	B1.SPD File Name:	Sub-circuit Name:	
traction Engine: PowerSI (11.1.1.11161)	Launch		
ommand-line Switches:			
		Edit Sub-circu	it Definitio

2. Find the correct CKT file, in the Tutorial directory. The file name starts with the name of the SPD design file, and has date appended to it in mmddyy format.

Note: *If desired, you can use the already generated CKT file, tutorial_PCB1.ckt, available in the Tutorial directory.*

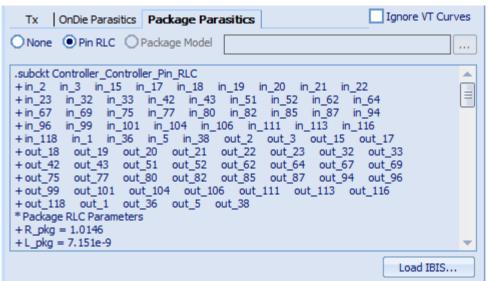
Open		? ×
Look in	: 🧀 Tutorial 🗾 🗸 🧿 🎓 🖽 -	
My Recent Documents Desktop My Documents	Chapter3_IBIS tutorial_PCB1.ckt vrm1.sp vrm2.sp	
My Computer		<u>O</u> pen
My Network	Files of type: Ckt File (*.sp; *.ckt) • • • • Open as read-only	Cancel

3. Open this file, and the circuit netlist is shown in Parallel Bus Analysis. This netlist can be edited.

ile Name: D;	:\Cadence\SPB_16.6\ASI\Update Sub-circuit Name:	tutorial_PCB1_090
.SUBCKT	tutorial_PCB1_090213_165538	
+	U20_AC8	
+	U20_A3	6
+	U20_AF16	
+	U20_AE17	
+	U20_AH17	
+	U20_AG17	
+	U20_AG18	
+	U20_AH18	
+	U20_AD18	
+	U20_AF19	
+	U20_AH19	
+	U20_AD19	
+	U20_AG20	
+	U20_AH20	
+	U20_AH21	
+	U20_AE21	
+	U20_AH22	
+	U20_AD21	
+	U20_AF17	
+	U20_AG21	
+	U23_A1	
	Edit	: Sub-circuit Definition

For example, changing the frequency range or other settings in the PowerSI simulation will result in new S-parameters. A new S-parameter file could be used by editing the BNPFILE line in the CKT file.

_									
	File: yster	mSI\Parall	el Bus Ana	alysis\Tuto	rial\tutoria	al_PCB1_0	90213_16	5538.ckt	Sub-ciri
	*B9 *U23_C8 *F7 *B7 *	U23_C8 U23_F7	DDR_MD		0.039413	72 72	0.133063 0.133863 0.134663 0.134663	33 34	
	*[REM]TH *[REM]**	ne followin	g is the in	fo for com	ponent co	nnection v *	rm_18		
	*[Power I *1	Nets] vrm_18_	_18 VRM_ 1		_CPU	0.025273	30	0.131953	30
	*[Ground *2 *[Signal N *	vrm_18_	2	GND	0.025019	90	0.124079	90	
	*[MCP En *	id]							
			e MCP seci ent, the M		output fr	om BNP			
	.MODEL +	Spara S	BNPFILE	= "tutoria	L_PCB1_09	0213_165	;538.bnp"		


NOTE!	The SPICE file created using the Layout Extraction will usually not require editing. In particular, the pin-naming and MCP sections should not be changed by the user. The MODEL section, including S-parameter filename, can be updated, as long as key aspects of the PowerSI model are not changed. This
	includes the topology, port location, numbering and naming.

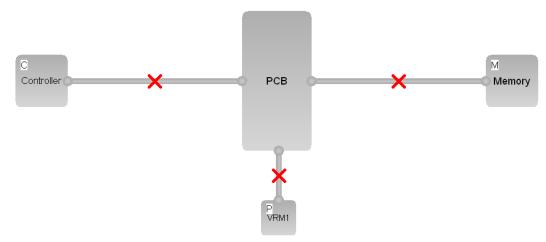
6.4 Package Models

Packages can be modeled in the same way as PCB interconnects, with dedicated extraction using external tools like PowerSI. However, Parallel Bus Analysis also has the flexibility to use the package parasitics defined in IBIS files. For this Tutorial example, we will turn on the RLC parasitic models in the Controller and Memory components.

6.4.1 Controller and Memory Package Model

- 1. Select the Controller component in the block diagram and open the property dialog box for Controller.
- 2. Select the **Package Parasitics** tab.
- 3. Select **Pin RLC.**

- 4. Click OK.
- 5. Repeat the steps for the Memory component.

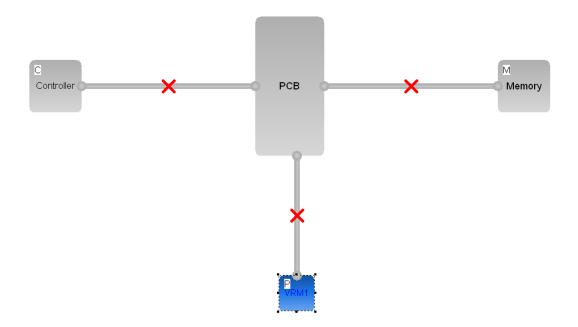

7 Adding a VRM

7.1 Overview

Parallel Bus Analysis allows non-ideal power simulation, including all aspects of power distribution network (PDN) modeling. This includes real power and ground planes in the PCB and package interconnects, as well as the I/O and VRM models. In this section, we will connect a VRM to the PCB and define a simple model for it.

NOTE	When not-ideal power simulations are performed, on-die parasitics should be included in the Controller and Memory component models, to include the
NOTE!	effects of any on-die decoupling capacitance. These can be defined in the OnDie Parasitics tab when you double-click a Controller or a Memory block.

7.2 Design Files



If you have performed the tasks covered in Chapter 6, you can continue with same design files. However, if you are starting from Chapter 7, open the chap7.ssix file located at <INSTALL_DIR>\SpeedXP\Samples\SystemSI\Parallel Bus Analysis\Tutorial\chap7. This directory also contains the IBIS model file for the Controller and Memory.

7.3 Define the VRM Block

In this section, we will edit the VRM component and define the model.

1. Select the **VRM** block and open the Property dialog box for the block.

The component has a netlist associated with it. The File Name filed displays the path to the netlist file, vrml.sp. This file was created when the VRM was defined and uses a model with constant DC voltage having Typical, Minimum and Maximum corners as shown.

File Name: D:\My work\Documents for System S: Sub-circuit Name: vrm1
Voltage Range (V)
Typ: 1.5 Min(Slow): 1.425 Max(Fast): 1.575 Default
.subckt vrm1 pwr ngnd * User-specified corner voltage for the first transmit 'Corner' selected in the 'Simulation Contro + Voltage = 1.5 \$ Typ Voltage
* [MCP Begin] * [Connection] vrm_power * [Connection Type] * [Power Nets] * 1 pwr vdd * [Ground Nets] * 2 ngnd vss * [Signal Nets] * [MCP End]
* ideal power supply Vsupply pwr ngnd 'Voltage'
Edit Sub-circuit Definition

2. Open the circuit definition netlist by clicking the **Edit Sub-circuit Definition** button. A more complicated VRM model could be defined by entering a model in this netlist in place of the **ideal power supply** entry in this file.

```
.subckt vrm1 pwr ngnd
* User-specified corner voltage for the first transmit 'Corner' selected in the 'Simulation Controller'.
+ Voltage = 1.5
                     $ Typ Voltage
* [MCP Begin]
* [Connection] vrm_power
* [Connection Type]
* [Power Nets]
* 1 pwr vdd
* [Ground Nets]
* 2 ngnd vss
* [Signal Nets]
* [MCP End]
* ideal power supply
Vsupply pwr ngnd 'Voltage'
.ends vrm1
```

- 3. Click Cancel to close the dialog box without making any modifications.
- 4. Modify the DC Voltage source, by changing the values in the Voltage Range group box. Set the new values as :

```
Typ=1.35V
Min=1.27V
```

Max=1.42V.

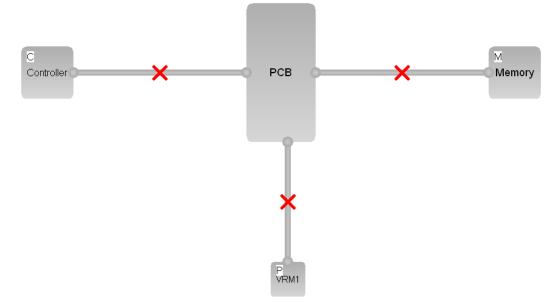
Voltage Range (V) Typ: 1.35 Min(Slow): 1.27 Max(Fast): 1.42	
+ Voltage = 1.35 \$ Typ Voltage * [MCP Begin] * [Connection] vrm_power * [Connection Type] * [Power Nets] * 1 pwr VDDQ * [Ground Nets] * 2 ngnd V5SQ * [Signal Nets] * [MCP End]	11
* ideal power supply Vsupply pwr ngnd 'Voltage' .ends vrm1	
Edit Sub-circuit Definit	tion

- 5. To save your modifications click **OK.**
- 6. Choose **File > Save**.

At this point all of the components in the Bus are defined. The last step before simulation is to define the connections between each component.

8 Connecting the System

8.1 Introduction


This chapter explains the block connections and Sigrity **Model Connection Protocol (MCP)**. MCP is a netlist description that is either inserted as a header in the circuit netlist for a component, or is separately created for a component. This netlist describes the pins and connections for that block.

For Controller and Memory components, the MCP block is created automatically from the IBIS file by Parallel Bus Analysis. Editing MCP descriptions is not recommended. For the VRM block, the MCP connection is contained in the .sp file created by Parallel Bus Analysis. This file includes model information that can be edited, as shown in Chapter 7. For the PCB and other interconnects, the model information is in a **.CKT** netlist file. Tools, such as PowerSI, are used for generating .CKT files from the network parameter simulation results.

For most system designs, the MCP connections between components will be created automatically based on common pin names. The exception to this rule is the Power and Ground connections, which usually require manual editing.

8.1.1 Example Files

The block diagram for this chapter consists of a Controller, a PCB, a Memory and a VRM component, as created in Chapter 7. These blocks have been defined and linked to models, but have not been connected together. The design looks like this:

If you have performed the tasks covered in Chapter 7, you can continue using the same design files. However, if you are starting from Chapter 8, open the chap8.ssix file located at <INSTALL_DIR>\SpeedXP\Samples\SystemSI\Parallel Bus Analysis\Tutorial\chap8. This directory also contains the IBIS model file for the Controller and Memory.

8.2 Connection Definitions

The MCP connections between the components are created based on common pin names.

8.2.1 Memory Component

In this section, you will edit the Memory component and define MCP for the Memory block.

- Click the Memory component Block.
 You need to connect the Memory component to the component U23 on the PCB.
- 2. From the Block Connection drop-down list, select **U23**.

Property Block Name: Memory	,		
Connection	Connect To	Block	Block Connection
to_PCB	• × •	PCB	U20 🔽
			U20
			vrm_18 <blank connection=""></blank>
			Contraction 2
Connection			

3. To define the connections between the Memory and the PCB, click the wire icon in the ConnectTo column.

Connections between the memory and PCB blocks are displayed in the Connection Definition tab. By default, signals with same pin names are automatically connected by SystemSI.

Prop	perty											-	
Ble	ock Name:	[Memory			-	Block N	Name:	PCB				_
Co	onn. Port:	[to_PCB				Conn.	Port:	U23				
	Net		Δ	PinNa	Ckt Node		Net		Δ	PinName		Ckt Node	
	DQ4	ł		H3	H3			DDR_MDQ<1	>	H3		U23_H3	
	DQ6	5		G2	G2			DDR_MDQ<2	>	G2		U23_G2	
	DQ7	7		H7	H7			DDR_MDQ<4	>	H7		U23_H7	Ξ
	DQ1	1		C2	C2			DDR_MDQ<1	1>	C2		U23_C2	
	DQ8	3		D7	D7			DDR_MDQ<1	2>	D7		U23_D7	
	DQ1	10		C8	C8			DDR_MDQ<1	5>	C8		U23_C8	
	DQ1	L		F7	F7			DDR_MDQS0		F7		U23_F7	
	UDQ	2S#		B7	B7			DDR_MDQS1		B7		U23_B7	
	😑 Uno	onnect	ed Sig					Unconnected	Signal				
	4	40		N3	N3			DDR_MDQ	<0>	H1		U23_H1	
	4	1		P7	P7			DDR_MDQ	<3>	F1		U23_F1	
	4	42		P3	P3			DDR_MDQ	<5>	H9		U23_H9	
	4	43		N2	N2			DDR_MDQ	<6>	G8		U23_G8	
	4	44		P8	P8			DDR_MDQ	<7>	F9		U23_F9	
	r	45		P2	P2			DDR MDC	<8>	B1		U23 B1	
	7					Auto Connect	Aut	o net property	overwrite				
C	onnection C	onneo	tion def	inition									
								1	ОК		ancel	Appl	
								L L	UK		ance		y

To connect the Memory block to PCB block, we need to connect the following:

- Signal DQ1 to DDR_MDQ<1>, DQ2 to DDR_MDQ<2>, and so on.
- LDQS to DDR_MDQS0
- UDQS to DDR_MDQS1
- VDDQ to VDD1.8V_CPU
- VSSQ to GND
- 4. Before you start connecting the signals, remove the default connections.
 - Select the connected signals, and right-click.

Block Nar	me: Me	emory		E	Block Name:	PCB		
Conn. Po	rt: to	_PCB		(Conn. Port:	U23		
📥 Net		🛆 PinNa	Ckt Node		Net	Δ	PinName	Ckt Node
	DQ4	H3	H3		DDR_MDQ<	1>	H3	U23_H3
	DQ6	G2	G2		DDR_MDQ<	2>	G2	U23_G2
=	DQ7	H7	H7		DDR_MDQ<	4>	H7	U23_H7
	DQ11	C2	C2		DDR_MDQ<	11>	C2	U23_C2
	DQ8	D7	Connect		DDR_MDQ<	12>	D7	U23_D7
	DQ10	CE			DDR_MDQ<	15>	C8	U23_C8
	DQ1	F7	Connect by Pin Pair		DDR_MDQS	0	F7	U23_F7
	UDQS#	B7	Disconnect		DDR_MDQS	1	B7	U23_B7
	Unconnected	Sig	->S/P/G class overwrite	2	Unconnecte	d Signal		
	AO	N3	->S/P/G class and NetN	lame overwrite	DDR_MD	Q<0>	H1	U23_H1
	A1	P7	<-S/P/G class overwrite		DDR_MD	Q<3>	F1	U23_F1
	A2	P3	<-S/P/G class and NetN		DDR_MD	Q<5>	H9	U23_H9
	A3	N2	s-b/P/o class and Neu	vame overwrite	DDR_MD	Q<6>	G8	U23_G8
	A4	P8	P8		DDR MD	0<7>	F9	U23 F9

- From the pop-up menu, choose *Disconnect*.
- 5. To connect DQ signals of the Memory block to DDR_MDQ signals of the PCB block, click the Auto Connect button.
- 6. In the MCP Auto Connection dialog box, select *Net name match*.

MCP Auto Connection			
O Pin name match			
O Ckt node name match			
• Net name match	Left net name	Right net name	
O Coord match			
O Auto coord match			
O Manual coord match			
			Flip Pins
Coord Match Info:			
		OK	Cancel

7. In the Left net name text box, enter DQ^*

- 8. In the Right net name text box, enter DDR_MDQ<*>
- 9. Click **OK** to close the window.

The net names are connected as required.

ock Name:	Memory			_	Block Name:	PCB			
onn. Port:	to_PCB				Conn. Port:	U23			
Net	Δ	PinNa	Ckt Node		Net	Δ	PinName	Ckt Node	
DQ0		E3	E3		DDR_MDQ<0	>	H1	U23_H1	
DQ1		F7	F7		DDR_MDQ<1	>	H3	U23_H3	
DQ2		F2	F2		DDR_MDQ<2	>	G2	U23_G2	
DQ3		F8	F8		DDR_MDQ<3	>	F1	U23_F1	
DQ4		H3	H3		DDR_MDQ<4	>	H7	U23_H7	
DQ5		H8	H8		DDR_MDQ<5	>	H9	U23_H9	
DQ6		G2	G2		DDR_MDQ<6	>	G8	U23_G8	
DQ7		H7	H7		DDR_MDQ<7	>	F9	U23_F9	
DQ8		D7	D7		DDR_MDQ<8	>	B1	U23_B1	
DQ9		C3	C3		DDR_MDQ<9	>	D3	U23_D3	
DQ10		C8	C8		DDR_MDQ<1	0>	D1	U23_D1	
DQ11		C2	C2		DDR_MDQ<1	1>	C2	U23_C2	
DQ12		A7	A7		DDR_MDQ<1	2>	D7	U23_D7	
DQ13		A2	A2		DDR_MDQ<1	3>	D9	U23_D9	
DO14		B8	B8		DDR MDO<1	4>	B9	U23 B9	1
7				Auto Connect	Auto net property	overwrite			
onnection Conr	ection def	inition							

Next, connect the following nets:

- LDQS to DDR_MDQS0
- UDQS to DDR_MDQS1
- 10. Sort the both the columns by NetName.
- 11. In the left column, select LDQS and UDQS.
- 12. In the right column, select DDR_MDQS0 and DDR_MDQS1.
- 13. Right-click and select Connect by Pin Pair.

This completes the process of connecting Signals of PCB block to the memory block. Next, you need to connect the Power and Ground Signals.

14. To connect the power signals, scroll down the list to display the Unconnected Power Nets.

ock Nam	ne: Me	emory		_	Block I	Name:	PCB			
onn. Por	rt: to	_PCB			Conn.	Port:	U23			
 Net 		A PinNa	Ckt Node]	Net		Δ	PinName	Ckt Node	I
	A6	R8	R8							1
	A7	R2	R2							
	CK	37	37							
	CK#	K7	K7							
	LDQS#	G3	G3							
	UDQS#	B7	B7	_						
	Unconnected	Po				Unconnected	Power			
	VDD	B2	B2			VDD 1.8V_	CPU	A9	U23_A1	l,
	VDDQ	A1	A1							
	Unconnected					Unconnected	Ground			
	VSS	A9	A9			GND		A7	U23_A3	
-	VSSQ	B1	B1							1
7				Auto Connect	Aut	to net property	overwrite			
								_		
onnectio	on Connecti	on definition								-

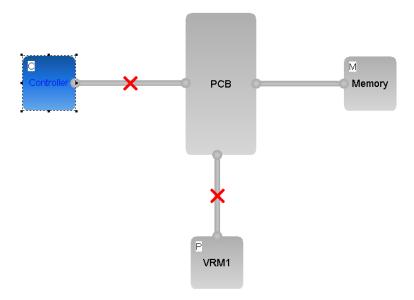
- 15. From the left column, select VDDQ.
- 16. From the Right column, select VDD1.8V_CPU and right-click.
- 17. From the pop-up choose, *Connect*.
- 18. Similarly, connect VSSQ to GND.

All PCB signals are now connected. There is no unconnected signal for PCB block as shown in following figure.

Prop	perty											-	. 🗆 X
Blo	ock Nar	me:	Memory			-	Block N	Name:	PCB				
Co	onn. Po	ort:	to_PCB				Conn.	Port:	U23				
	Net	:	Δ	PinName	Ckt Node]	Net		Δ	PinName		Ckt Node	
		DQ3		F8	F8		-	DDR_MDQ<3	>	F1		U23_F1	
		DQ4		H3	H3			DDR_MDQ<4	l>	H7		U23_H7	
		DQ5		HB	H8			DDR_MDQ<5	i>	H9		U23_H9	
		DQ6		G2	G2			DDR_MDQ<6	i>	G8		U23_G8	
		DQ7		H7	H7	·		DDR_MDQ<7	'>	F9		U23_F9	
		DQ8		D7	D7			DDR_MDQ<8	>	B1		U23_B1	
		DQ9		C3	C3			DDR_MDQ<9	>	D3		U23_D3	
		DQ10		C8	C8			DDR_MDQ<1	.0>	D1		U23_D1	
		DQ11		C2	C2			DDR_MDQ<1	1>	C2		U23_C2	
		DQ12		A7	A7			DDR_MDQ<1	2>	D7		U23_D7	
		DQ13		A2	A2	-		DDR_MDQ<1	3>	D9		U23_D9	
		DQ14		B8	B8			DDR_MDQ<1	4>	B9		U23_B9	=
	-	DQ15		A3	A3			DDR_MDQ<1	.5>	C8		U23_C8	
		LDQS		F3	F3			DDR_MDQS0		F7		U23_F7	
		UDQS		C7	C7			DDR_MDQS1		B7		U23_B7	
		VDDQ		A1	A1			VDD 1.8V_CPU	U	A9		U23_A1	
		VSSQ		B1	B1			GND		A7		U23_A3	
		Unconnec	ted Signal N				۲	Unconnected	Signal Net(s)				
		Unconnec	ted Power N				•	Unconnected	Power Net(s)				
		VDD		B2	B2								
		Unconnec	ted Ground				•	Unconnected	Ground Net(s)				
		VSS		A9	A9								
	7					Auto Connect		o net property	overwrite				•
	¥					Auto Connect	Aut	o net property	overwrite				
C	onnect	tion Conne	ection definition	on									
										ок	Cancel	Ap	ply

19. Click OK.

Controler	PCB Memory
Note!	There can be cases where data nets and some Power and Ground pins are not connected, or incorrectly connected, because the pin names in the .ckt file do not directly match the pin names in the IBIS files. For such cases, you need to manually map the pins. For procedural details, see <u>Unmapped Pins in MCP Editor</u> .


100

The Property dialog box closes and the ${f Block}$ diagram is also updated to show a valid connection between **PCB** and **Memory**.

8.2.2 Connecting Controller Component

In this section, you will connect the Controller block to the PCB block. For this, open the Property dialog box for the Controller block.

1. To open the Property dialog box for the Controller block, double-click on the Controller block.

2. Verify that the value in the first Connection Port column is set to **to_PCB**.

Property				
Block Name: Controlle	r			
Connection	Connect To	Block	Block Connection	
to_PCB 🗸	→X→	PCB		
	Select co	nnection		
	"to_PCB			
Connection				

3. Next, click second Conn.Port column, and from the drop-down list of PCB connections, select **U20**.

The Red Cross (X) in the Connect To column indicates unconnected pins.

4. To connect the two blocks, click the Wire symbol with a red Cross, in the Connect To column.

The Connection Definition tab opens listing all the signals for the block.

- 5. To enable connecting signals DQ* to DDR_MDQ<*>, you can either use the Auto Connect button (see section <u>8.2.1</u>,) or perform the following steps.
 - a. Select the filter button.

- b. Select the *Enable Unconnected Pins Filter* check box.
- c. Select the *Both with different condition* option.
- d. From the first drop-down list, select NetName.
- e. In the text box, enter DQ*.
- f. From the second drop-down list select NetName.
- g. Enter DDR_MDQ<*> in the text box and click anywhere outside the filter window.

	V				
	🗹 Enbale	Unconnected Pi	ns Filter		
_	OLeft	Right	OBoth	Both with different condition	
	NetName	▼ DQ*		NetName DDR_MDQ<*>	

The required signals are filtered and listed in the Property window.

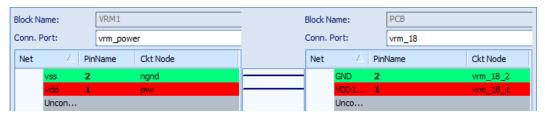
ock Name:	Controller			E	lock Name:	PCB		
onn. Port:	to_PCB			Conn. Port:		U20		
Net	Δ	PinName	Ckt Node] [Net	Δ	PinName	Ckt Node
Unconn	ected Signal Net(s)				Unconnected	Signal Net(s)		
DQ0)	87	87		DDR_MD0	2<0>	AF16	U20_AF16
DQ1	L	80	80		DDR_MD0	2<1>	AE17	U20_AE17
DQ2	2	85	85		DDR_MD0	2<2>	AH17	U20_AH17
DQ3	3	82	82		DDR_MD0	2<3>	AG17	U20_AG17
DQ4	ŧ	62	62		DDR_MD0	2<4>	AG18	U20_AG18
DQ5	5	69	69		DDR_MD0	2<5>	AH18	U20_AH18
DQ6	5	64	64		DDR_MD0	2<6>	AD18	U20_AD18
DQ7	7	67	67		DDR_MD0	2<7>	AF19	U20_AF19
DQ8	3	94	94		DDR_MD0	2<8>	AH19	U20_AH19
DQ9)	101	101		DDR_MD0	2<9>	AD19	U20_AD19
DQ1	10	96	96		DDR_MD0	Q<10>	AG20	U20_AG20
DQ1	11	99	99		DDR_MD0	2<11>	AH20	U20_AH20
DQ1	12	118	118		DDR_MD0	2<12>	AH21	U20_AH21
DQ1	13	111	111		DDR_MD0	2<13>	AE21	U20_AE21
DQ1	4	116	116		DDR_MD0	2<14>	AH22	U20_AH22
DQ1	15	113	113		DDR_MD0		AD21	U20_AD21
Unconn	ected Power Net(s)				Unconnected	Power Net(s)		
Unconn	ected Ground Net(s)				Unconnected	Ground Net(s)		
V				Auto Connect	Auto net property	overwrite		
_								
onnection C	Connection definition	n						

6. Select the nets in columns, right-click and select *Connect by Pin Pair*. The signals are connected as shown in the following figure.

Block Name:	Controller		Block N	lame:	PCB		
Conn. Port:	to_PCB		Conn.	Port: U	120		
Net	△ PinName	Ckt Node	Net		Δ	PinName	Ckt Node
DQ0	87	87		DDR_MDQ<0>		AF16	U20_AF16
DQ1	80	80		DDR_MDQ<1>		AE17	U20_AE17
DQ2	85	85		DDR_MDQ<2>		AH17	U20_AH17
DQ3	82	82		DDR_MDQ<3>		AG17	U20_AG17
DQ4	62	62		DDR_MDQ<4>		AG18	U20_AG18
DQ5	69			DDR_MDQ<5>		AH18	U20_AH18
DQ6	64	64		DDR_MDQ<6>		AD18	U20_AD18
DQ7	67	67		DDR_MDQ<7>		AF19	U20_AF19
DQ8	94	94		DDR_MDQ<8>		AH19	U20_AH19
DQ9	101			DDR_MDQ<9>		AD 19	U20_AD19
DQ10	96	96		DDR_MDQ<10>		AG20	U20_AG20
DQ11	99	99		DDR_MDQ<11:		AH20	U20_AH20
DQ12	118	118		DDR_MDQ<12:		AH21	U20_AH21
DQ13	111	111		DDR_MDQ<13:		AE21	U20_AE21
DQ14	116	116		DDR_MDQ<14:		AH22	U20_AH22
DQ15	113	113		DDR_MDQ<15:		AD21	U20_AD21
Unconnecte	ed Signal Net(s)			Unconnected Si	gnal Net(s)		
Unconnecte	ed Power Net(s)			Unconnected Po	ower Net(s)		
Unconnecte	ed Ground Net(s)			Unconnected G	round Net(s)		
Y			Auto Connect Aut	o net property ov	verwrite		

- 7. Clear the filter settings.
- 8. Connect the following signals.
 - a. LDQS to DDR_MDQS0
 - b. UDQS to DDR_MDQS1
 - c. VDDQ to VDD1.8V_CPU
 - d. VSSQ to GND
- 9. Click Apply.

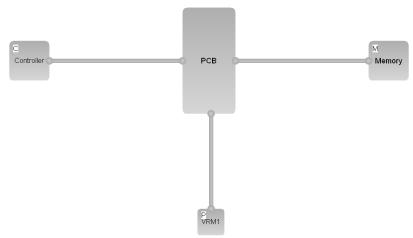
The Block Diagram is updated and now shows a valid connection between the Controller and PCB, as well. As the ground signal is now connected, the red cross on the connection between Controller PCB block is removed.


Note!	There can be cases where data nets and some Power and Ground pins are not connected, or incorrectly connected, because the pin names in the .ckt file do not directly match the pin names in the IBIS files. For such cases, you need to manually men the pins. For
	files. For such cases, you need to manually map the pins. For
	procedural details, see <u>Unmapped Pins in MCP Editor</u> .

8.2.3 Editing the VRM Block

- 1. Open the Property dialog box for VRM block.
- 2. Verify that the value in the first Connection Port column is set to **vrm_power**.
- 3. Click second Conn.Port column, and from the drop-down list, select **vrm_18**.

The wire icon in the Connect To column changes to green wire, indicating the complete connection.


4. To view the MCP connection, click the green wire icon in the ConnectTo column.

Because of the same PinNames, the ground and VCC signals were connected automatically by SystemSI.

5. Click OK.

The Connector icon changes from a $\text{Red } \mathbf{X}$ to a Green Wire and the block diagram is also updated.

The design is now ready for Simulation Setup.

8.2.4 Unmapped Pins in MCP Editor

Connectivity in the MCP Editor is based on pin names. Signals with same PinNames are connected automatically. For some designs, it may happen that the pin names do not directly match. As a result, MCP Editor will have data nets, and Power and **Ground** pins that are either not mapped, or are incorrectly mapped.

For such scenarios, you need to manually edit the connections in MCP. This section lists the steps to be followed for manual connections.

Connecting Unmapped Pins

Following figure shows the connectivity of a Memory block. The blank column between two blocks indicates that there is no connection for the DQ lines. This is because there are no common pin names between the .ibis file and the .ckt file, resulting in multiple unconnected data nets.

To see the steps for connecting the pins, see sections 8.2.1 and 8.2.2.

Modifying Incorrect Connections

Following figure shows the connections of a Memory block in the MCP Editor window. The data nets of the Memory block are incorrectly connected to the Power and Ground nets.

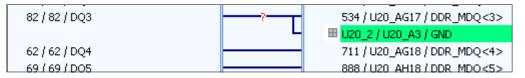


Figure 1: Incorrect Mappings

To fix such connections, you need to follow a 2-step process. First, disconnect the PCB block pins, and then reconnect the pins to correct data nets.

To remove the wrong connections shown in Figure 1, perform the following steps.

- Select all the nodes in the U20 Connection of the PCB block, and right-click.
- From the pop-up menu, select **Disconnect**.

The connections are removed. The nodes in the PCB block are temporarily floating, so that they can now be matched up to the correct pins in the Memory block.

With the connections on the PCB side clear, we can now connect correct signals. For example, in MCP Editor, connect CKT node A1-VDDQ to the U23_A1, both in RED.

- To connect the nets in the memory block to the Ckt nodes in PCB, first select the net on the memory side, and then select the PCB net.
- > To accept the MCP Mapping, click **Apply**.

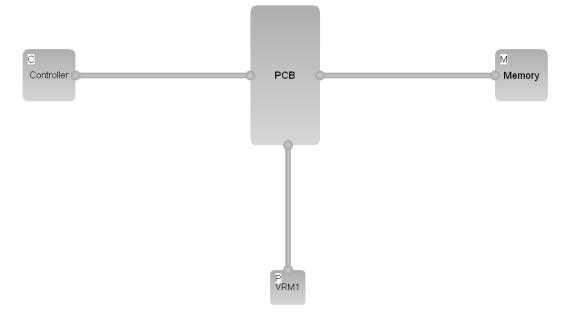
Similarly, repeat the step to connect Ground, **B1 - VSSQ** on the Memory side to the **U23_A3** on the PCB

Both sets of pins are now be mapped correctly to each other as shown in the following figure.

B2	VDD	←	Lumped(B2)		
A1	VDDQ	←	Lumped(A1)	U23_A1	VDD1.8V_CPU
A9	VSS	←	Lumped(A9)		
B1	VSSQ	←	Lumped(B1)	U23_A3	GND

In SystemSI - Parallel Bus Analysis, the pin names for the Controller and Memory blocks come from the original IBIS file, and are considered

IMPORTANT!	fixed. So in this particular case, it is necessary to remove and remap the pin names from the U23 Connection, as the pin names in the Memory block are fixed.
Summary!	The methodology for connecting pins through the MCP editor is consistent regardless of type of pin.
	1. Disconnect the PCB "side" by selecting "Disconnect".
	2. Re-connect the pins by clicking one first, then the other.


9 Simulation

9.1 Introduction

This chapter introduces the basic simulation settings in the **Analysis Options**, and the data presentation window. You will then perform an initial simulation, then make several changes to the bus design and simulation settings, and perform some experiments on the bus.

9.2 Tutorial Files

The block diagram for this chapter consists of a **Controller**, **Memory**, **PCB**, and **VRM** component, as created in previous chapters. This design is fully defined with models for each component and a valid connection between each. The design looks like this:

If you have performed the tasks covered in Chapter 8, you can continue with same design files. However, if you are starting from Chapter 9, open the chap9.ssix file located at <INSTALL_DIR>\SpeedXP\Samples\SystemSI\Parallel Bus Analysis\Tutorial\chap9. This directory also contains the IBIS model file for the Controller and Memory blocks.

9.3 Analysis Options

The **Analysis Options** dialog box contains most of the details for the bus simulation. All aspects of the Analysis Options are covered in the next several sections.

1. To open the Analysis Options dialog box, from the Setup menu, select Analysis Options:

Seti	l dr	Tools	Window	Help				
	Analysis Options							
	Terminate Unconnected Nodes							
	Verify Timing Specs before Simulation							
\$	Pause before Simulation							
	Hide Previous Curves							
	Sweep Mode							
	Probe Point							

The dialog box has sections:

- <u>Circuit Simulator</u>
- <u>Simulation Configuration</u>
- <u>Stimulus Definition and Model Selection</u>
- <u>Restore Defaults</u>

Each of these options is explained in the following sections.

9.4 Simulator

The default circuit simulator in SystemSI is Sigrity SPDSIM. SPDSIM is the same time domain simulator used in Sigrity SPEED2000. Parallel Bus Analysis can also use HSPICE if available. Some model types, including transistor-level driver models, require HSPICE.

Simulator Simulator Image: second stress of the secon					
Circuit Simulator					
SPDSIM Characterization					
30uration: 30 ns Vmeas: V					
Circuit Simulator Options Channel Simulator Controls 5					
* Add global .option and .include commands here. * They'll be used for time domain characterization. * .option delmax=10p					
4					
Simulation Name					
Automatic O Custom 6					

Using the options in the Simulator group box, you can specify the following:

- Use Channel Simulator for Data Bus Write Select this check box if you want to perform BER analysis on DDR4 data buses.
- Simulator of choice. By default, Sigrity SPDSIM is selected. HSPICE can be used if it is available.

3. Characterization Options

These options are available only if the Use Channel Simulator for Data Bus Write check box is selected.

- **Duration**: Refers to the duration of the Characterization run with the specified Circuit Simulator. The duration value specified should be long enough to allow any reflections to settle out, and to allow the waveforms reach their steady state.
- **Vmeas**: Refers to the voltage threshold at which delay is measured from the Characterization. This information is included in the channel simulation report as Delay. If Vmeas value is not explicitly called out in an IBIS file associated with the Tx block, Vmeas is taken as the midpoint of the voltage swing seen in the Characterization waveform.
- 4. Circuit Simulator Options

Global options, including .OPTION and .INCLUDE cards can be specified in this window. For HSPICE simulation, accurate characterization usually requires the DELMAX option, which sets the maximum allowable transient analysis time step size.

5. Channel Simulator Controls

This tab is visible only if the Use Channel Simulator for Data Bus Write check box is selected.

Use this tab to specify Channel Simulator controls. These controls are reflected in the simulation results.

NOTE! For detailed explanation of channel simulation options, see *SystemSI – Serial Link Analysis Tutorial*.

- 6. Simulation Name.
 - If the **Automatic** option is selected, the result folder names are automatically defined according to the simulation times.
 - With the **Custom option** selected, click the **Play** button . The **Simulation Name** window pops up.

You can define result folder names manually according to the simulation times.

Simulation Name					
Please assign a simulation name:					
	OK Cancel				

9.5 Simulation Configuration

The **Simulation Configuration** pane allows you to specify key details of the simulation, including selection of the bus, as well as corner model combinations.

us Type: Data	Ideal Power Direction
Fast	Virection
✓ Тур	Read
Slow 2	
Fast/Slow	
Slow/Fast	
Active Rank: #	of Ranks: 1
Rank1	Memory1
2	
3	
3	
3	

1. Specify the Bus to be simulated. Most common bus types defined for a project are **Address**, **Clock** and **Data** bus. Choose the **Data** bus.

Simulation Configuration						
Bus Type:	Data	•				
Corner Fast	Ctrl		-			
V Typ	Data					

2. The simulation may be run with **Ideal Power** assumed. If this is selected, the VRM model is not used, and an ideal DC voltage is assumed for each device, based on the Corner selected. Also, all power and Ground contacts are assumed to be a single common reference.

-Simulation (Configuration-		
Dimetacion	coningeration		
Bus Type:	Data	•	🖉 🗹 Ideal Power
Corner-			Simulation Type
🗌 Fast			Vrite
V Tvn			Read

3. For the selected bus, choose the active memory blocks. In this project, there is only one memory block, so enable **Rank1** check box.

Active Rank:	# of Ranks: 1
Rank Name	Memory Blocks
🗹 Ranki	Memory1
	Auto Assign

4. The Simulation **Corners** can be specified for the Controller and Memory devices. This allows you to specify the IBIS model **Min/Max/Typ** for specific timing simulations, through the Parallel Bus Analysis GUI. For this project, use the nominal model, or **Typ**. These corners correspond to device characteristics as well as operating conditions, and are required elements of the IBIS model.

Corner
Fast
🗹 Тур
Slow
Fast/Slow
Slow/Fast

5. The Simulation **direction** can be specified for the bus, either **Write** or **Read**. For this simulation, select **Write**.

Simulation Type	
Vrite	
Read	

NOTE!

Multiple Corners and Simulation Types can be selected for a given simulation. In this case, successive simulations will be run, with separate results created for each corner.

9.6 Data Bus Write

In this tab, you specify the parameters to run Data Bus Write simulations with the channel simulator to perform BER analysis.

	Important!	This tab is visible only if the Use Channel Sin Data Bus Write check box is selected.	mulator for				
	Simulation Configu	ration Data Bus Write	_				
	Simulation Configuration Data Bus Write Ignore Time: 200 ns # of Bits: 100000 Bit Sampling Rate: 32						
L							

- **Ignore Time** (ns): Specify the initial time to be ignored from the waveform, so that the data is not corrupted with the startup time transients. The default value is 200ns. You can use a lower value such as 100 ns if you do not use adaptive equalizers like adaptive DFE.
- Number of Bits: Use this text box to specify the number of bits to be simulated. The default value is set to 100,000 bits, which is the minimum number of bits required for BER computation.
- **Bit Sampling Rate:** This parameter controls the granularity used by the channel simulator to compute the eye density. This is analogous in nature to the timestep control in a traditional circuit simulator. The larger the number is, the longer the simulation time is. Default value is 32 samples/bit.
- **BER Floor:** Specifies the minimum Bit Error Rate (BER) to be used in the simulation. The default value is 1e-20.
- **# of Bits for Display:** The channel simulator generates millions of bits worth of waveforms. Saving all this data, takes up significant disk space and slows down the display performance. To avoid this, SystemSI provides users with an option to specify the number of bits worth of raw waveforms to be saved to disk and displayed. For example, if you enter 100 in the field, SystemSI save last 100 bits of raw waveform data for display.

9.6.1.1 Eye Distribution Methods

Select the method to be use for generating Eye diagrams.

Time Domain Waveform: Uses time domain convolution method for generating Eye diagrams. In this method, real stimulus patterns, including TX jitter effect, are convolved with channel response to produce the final result. Use of this method is recommended, if the design has AMI model with getwave function, or if you want to inject TX jitter.

Statistical: This method uses probability density function (PDF) method to produce the final result.

9.6.1.2 BER_Eyes

Select the **BER_Eye generation** check box to generate the statistical eye diagram for a specific BER.

By default, the BER_Eye generation takes into account the time scale as well as voltage scale. However, you can modify the default selection and select either Time scale check box or Voltage scale check box.

LBERs: Log of the bit error ratio at which BER eye is generated.

NOTE! For detailed explanation of channel simulation options, see *SystemSI – Serial Link Analysis Tutorial.*

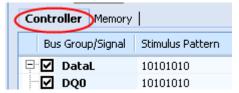
9.7 Stimulus Definition and Model Selection

The Stimulus Definition and IO Model Selection pane of the Analysis dialog box is used for source definition, including data rate, delay and pattern. It also allows you to select IO models for both Controller and Memory from the different models present in the IBIS files, based on the [Model Selector] syntax. Lastly, timing can be specified, and is linked to the Worst-case Setup / Hold calculator.

9.7.1 Controller Setup

The following figure shows the simulation settings for the Controller in a Write simulation. Each part of this dialog box is defined and specified below.

Controller Memory 2 8 WLO/ClkMeasDelay V Memory Blocks Sha							
Bus Group/Signal	Stimulus Pattern	Stimulus Offset	Transmit IO Model	Receive IO Model	Status		
🛛 🗹 DataL	10101010	Default		6			
DQ0	10101010	0.5T	DDR3_DQ34_NO_ODT	DDR3_DQ34_NO_ODT	Signal		
DQ1	10101010	0.5T	DDR3_DQ34_NO_ODT	DDR3_DQ34_NO_ODT	Signal		
DQ2	10101010 4	0.5T	DDR3_DQ34_NO_ODT	DDR3_DQ34_NO_ODT	Signal		
DQ3	10101010	0.5T	DDR3_DQ34_NO_ODT	DDR3_DQ34_NO_ODT	Signal		
DQ4	10101010	0.5T 5	DDR3_DQ34_NO_ODT	DDR3_DQ34_NO_ODT	Signal		
DQ5	10101010	0.5T	DDR3_DQ34_NO_ODT	DDR3_DQ34_NO_ODT	Signal		
DQ6	10101010	0.5T	DDR3_DQ34_NO_ODT	DDR3_DQ34_NO_ODT	Signal		
DQ7	10101010	0.5T	DDR3_DQ34_NO_ODT	DDR3_DQ34_NO_ODT	Signal		
🛛 🗹 LDQS	10	0.75T	DDR3_DQS34_NO	DDR3_DQ534_NO_ODT	Timing Ref		
🗹 DataU	10101010	Default					
DQ8	10101010	0.5T	DDR3_DQ34_NO_ODT	DDR3_DQ34_NO_ODT	Signal		
DQ9	10101010	0.5T	DDR3_DQ34_NO_ODT	DDR3_DQ34_NO_ODT	Signal		
	10101010	0 ST	DDR3 DO34 NO ODT	DDR3 DO34 NO ODT	Signal		


1. Basic source parameters can be set in the TOP part of this dialog box as follows:

	Data Rate: 0.6	6 Gb	ps Clock Period: T =	3.33333	ns Bit Period:	1.66667	ns	# of Bits:	8	
--	----------------	------	----------------------	---------	----------------	---------	----	------------	---	--

• Set Data Rate to 0.6 Gbps

The **Bit Period** and **Clock Period** (**T** for this data rate) is calculated and displayed, from the value entered.

- Set Number of Bits to be simulated to 8
- 2. Tabs for the Controller and Memory are available. Select the Controller first.

Specify the Bus Groups and signals for this simulation. The Controller has two bus groups defined, DataL, DataU. The single memory device only has two corresponding bus groups, DataL and DataU, which connects DQ0 through DQ15. We can turn these buses On or Off by selecting in this dialog box. Make no changes to this setup.

In case of Data Write simulations, if the data bus has a CLOCK signal defined and connected, the clock signal is also included in this list, and can be selected for simulations as shown in the following figure.

LDQ5	10	0.75T	DDR3_DQS34_NO_ODT
LDQ5#	01	0.75T	DDR3_DQ534_NO_ODT
CLKOP	10	0.5T	DDR3_DQ534_NO_ODT
CLKON	01	0.5T	DDR3_DQ534_NO_ODT

4. A unique stimulus pattern can be defined for each data line and strobe. For this simulation, an identical 1010... pattern stimulus is defined for each data and strobe line.

Stimulus Pattern
10101010
10101010
10101010
10101010
10101010
10101010
10101010
10101010
10101010
10

5. The relative delay can be defined for each data line and strobe. For this simulation, an IDEAL offset of a quarter clock period between Data and Strobe, is used.

Bus Group/Si	Stimulus Pattern	Stimulus Offset (ns)
📮 🗹 DataL	10101010	Default
DQ0	10101010	0.5T
DQ1	10101010	0.5T
DQ2	10101010	0.5T
DQ3	10101010	0.5T
DQ4	10101010	0.5T
DQ5	10101010	0.5T
DQ6	10101010	0.5T
DQ7	10101010	0.5T
🛛 🗹 LDQS	10 🤇	0.75T
		\smile

NOTE!	Parallel Bus Analysis has a utility for calculating non-ideal, Worst-case Setup and Hold values for these delays. See <i>Section 9.6.3</i> below for more
	information.

6. The various models defined in the IBIS file may be viewed and a selection made for each signal line. For Transmit (Controller) use the "DDR3_DQ34_NO_ODT" model

Transmit IO Model
DDR3_DQ34_NO_ODT
DDR3_DQS34_NO_ODT
DDR3_DQS34_NO_ODT

If both Write and Read options are selected, then along with Transit IO model, you also see a column for Receive
IO model.

 Memory Block Share IO Model: Select this option if the Memory blocks should share same IO model. If this option is not selected, different IO models can be specified for the Memory blocks.

For designs with single memory device, this option is selected by default and is disabled.

Memory Blocks Share IO Models

8. **WLO/ClkMeasDelay**: This option is enabled only for Data buses and is useful for designs with multiple memory blocks. To generate useful values of Write Leveling offset (WLO) and the Clock Delay (ClkMeasDelay), the clock and the Timing Reference signals must be defined and connected for data buses.

If this option is selected for Data Bus Write simulation, WLO is added to the Stimulus Offset of the data and timing reference signals at the Controller.

In case of Data Bus Read simulation, the ClkMeasDelay value is added to the "Stimulus Offset" of the data and timing reference signals at the Memory:

Depending on the topology, the WLO and ClkMeasDelay values are different for each Data Bus Group. The WLO and ClkMeasDelay values used during simulation are specified or calculated in the Write Leveling Dialog box.

To invoke the Write Leveling dialog box:

- a) From the Tools menu, choose Write Leveling.
- b) In the Write Leveling dialog box, you can either specify a value for the Write Leveling Offset Resolution, or use the default value.
- c) Select the Calculate button to auto calculate the WLO and CLK delay values by simulating the design.

Memory	ClkMeasDelay (ps)	StrobeMeasDelay (ps)	WLOSkew (ps)	WLO (ps)	
Mem_U1::DataL	1250.21	1250.86	-0.653752	0	
Mem_U2::DataU	2598.96	2105.12	493.849	500	

If required, you can manually edit the ClkMeasDelay, StrobeMeasDelay, and WLO values.

- d) Click OK to save the WLO values.
- 9. The IO Model Filter text box allows you to filter the IO models listed in the drop-down list.

For example, to view only DDR4 IO models, enter DDR4 in the IO Model Filter textbox. The drop down list now is modified to display the IO models starting with DDR4, as shown in the following figure.

Bus Group/Si	Stimulus Pattern	Stimulus Offset (ns)	Transmit IO Model Re
🖓 🗹 DataL	10101010	Default	
DQ0	10101010	0.5T	DDR4 DQ34N48P NO 🔻 DD
DQ1	10101010	0.5T	DDR4_DQ34N48P_NO_ODT
DQ2	10101010	0.5T	DDR4_DQ34N48P_ODT
DQ3	10101010	0.5T	DDR4_DQ34N60P_NO_ODT
DQ4	10101010	0.5T	DDR4_DQ34N60P_ODT
DQ5	10101010	0.5T	DDR4_DQ40N48P_NO_ODT
DQ6	10101010	0.5T	DDR4_DQ40N48P_ODT
DQ7	10101010	0.5T	DDR4_DQ40N60P_NO_ODT
↓			DDR4_DQ40N60P_ODT
D Model Filter: DDR	4		

10. Click **OK** to accept all settings.

9.7.2 Memory Setup

Click the **Memory** Tab. Notice that the memory device (from the IBIS model) has two buses defined for it, **DataL** and **DataU**.

1. Click the **Receive Model** field on one of the lines to view the Models. Make no changes to the Memory model at this time.

Controller Memory Blocks Share IO Models							
Bus Group/Si	Stimulus Patt	Stimulus Offs	Transmit IO Mo	Receive IO Model	Status		
🖃 🗹 DataL	10101010	Default					
DQ0	10101010	0	DDR3_DQ34_N	DDR3_DQ34_NO_ODT	Signal		
DQ1	10101010	0	DDR3_DQ34_N	DDR3_DQ34_NO_ODT	Signal		
DQ2	10101010	0	DDR3_DQ34_N	DDR3_DQ34_NO_ODT	Signal		
DQ3	10101010	0	DDR3_DQ34_N	DDR3_DQ34_NO_ODT	Signal		
DQ4	10101010	0	DDR3_DQ34_N	DDR3_DQ34_NO_ODT	Signal		
DQ5	10101010	0	DDR3_DQ34_N	DDR3_DQ34_NO_ODT	Signal		
DQ6	10101010	0	DDR3_DQ34_N	DDR3_DQ34_NO_ODT	Signal		
DQ7	10101010	0	DDR3_DQ34_N	DDR3_DQ34_NO_ODT	Signal		
🗹 LDQS	10	0	DDR3_DQS34	DDR3_DQ534_NO_ODT	Timing Ref		
LDQ5#			DDR3_DQS34	DDR3_DQ534_NO_ODT	Not Connected		
🖃 🗹 DataU	10101010	Default					
DQ8	10101010	0	DDR3_DQ34_N	DDR3_DQ34_NO_ODT	Signal		
DQ9	10101010	0	DDR3_DQ34_N	DDR3_DQ34_NO_ODT	Signal		
🗹 DQ10	10101010	0	DDR3_DQ34_N	DDR3_DQ34_NO_ODT	Signal		
DQ11	10101010	0	DDR3_DQ34_N	DDR3_DQ34_NO_ODT	Signal		
✓ DQ12	10101010	0	DDR3_DQ34_N	DDR3_DQ34_NO_ODT	Signal		
🗹 DQ13	10101010	0	DDR3_DQ34_N	DDR3_DQ34_NO_ODT	Signal		
☑ DQ14	10101010	0	DDR3_DQ34_N	DDR3_DQ34_NO_ODT	Signal		
☑ DQ15	10101010	0	DDR3_DQ34_N	DDR3_DQ34_NO_ODT	Signal		
UDQS	10	0	DDR3_DQ534	DDR3_DQ534_NO_ODT	Timing Ref		
UDQ5#			DDR3_DQ534	DDR3_DQ534_NO_ODT	Not Connected		

2. Note that there is a single Timing Reference for each bus.

9.7.3 Timing Budget

Parallel Bus Analysis comes with an integrated tool that automatically calculates the worst case Setup and Hold values from data set by the user.

1. To launch the **Timing Budget tool**, select **Tools > Timing Budget**....

Тос	ols Window Help					
	Channel Characterization					
Bus Simulation						
	Timing Budget					
	Write Leveling					
	Frequency Response					
	S Parameter Extraction					
	S Parameter Viewer					
	Sweep Manager					
	Layout Association					
	Result Browser					
	Report Generator					
	Options •					

In the **Timing Budget** dialog, note the values updated from the **Analysis Options**, including Data Rate, in addition to IBIS models and Bus type.

2. To set **Driving**, **Receiving** and **Skew Budget** values, click the **Default** button, or you can enter desired values in corresponding fields.

Timing Budget _ 🗆 X
Bus Type: Data Edge Type: BothEdges Data Rate: 0.6 Gbps Clock Period: T = 3.33333 ns Bit Period: 1.66667 ns Default Strobe Offset: 0.833333 ns Controller IBIS File: ssi_pba_ex.ibs IBIS File: Ssi_pba_ex.ibs Component: Component: Memory
Write Read Driving (ns) Min Transmit Setup: 0.555555 Min Receive Setup: 0.416666 Skew Budget (ns) Setup: 0.138889 Default Min Transmit Hold: 0.555555 Min Receive Hold: 0.416666 Setup: 0.138889
< III OK Cancel Apply

If the data bus in your design, has a clock signal defined and connected, then for all Data write simulations, the Strobe and Clock section is also available. This allows you to measure timing margin between clock signal and data strobe signal.

Г	Receiving (ns)	
	Min Receive Setup:	
	Min Receive Hold:	
	Strobe and Clock	
	Min Strobe Setup:	
	Min Strobe Hold:	
	Max Strobe/Clock Skew (+):	
	Max Strobe/Clock Skew (-):	

Use the Default button to populate the fields with default values.

- 3. Click the **Read** tab.
- 4. Set **Driving**, **Receiving** and **Skew Budget** values. You can either specify custom values or use the default values.

Use the Default button to populate the fields with default values.

Select the **Default** button.

Fiming Budget
Bus Type: Data Tedge Type: BothEdges Data Rate: 0.6 Gbps Clock Period: T = 3.33333 ns Bit Period: 1.666667 ns Default Strobe Offset: 0.833333 ns Controller Memory IBIS File: ss_pba_ex.ibs Component: Component: Memory
Write Read Receiving (ns) Driving (ns) Max Receive Skew (+): 0.416666 Max Receive Skew (-): 0.416666 Max Receive Skew (-): 0.416666 Max Receive Skew (-): 0.416666 Transmit Skew (+): 0.166667 Transmit Skew (-): 0.166665 Vote: Positive (+) skew means that the Data lags the Strobe; negative (-) skew means that the Data leads the Strobe. tDQSQ describes the latest valid transition of the associated DQ pins; tQH describes the earliest invalid transition of the associated DQ pins.
K Cancel Apply

5. Click OK.

The **Timing Budget** dialog closes. It goes back to the **Analysis Options** window. (Go to the **Analysis Options** by selecting **Setup > Analysis Options**.)

6. In the Controller tab, go to DataL Line, right-click the Stimulus Offset field.

A pop-up menu appears.

7. Select Default.

Stimulus Definition & Model Selection Data Rate: 0.6 Gbps Clock Period: T = Controller Memory Image: Memory					
Bus Group/Si	Stimulus Pa	Stimulus Of	set	Transmit IO Model	Status
📮 🗹 DataL	10101010	0.5*		1	
DQ0	10101010	0.5 D	efault	DR3_DQ34_NO_ODT	Signa
DQ1	10101010	0.5 N	one	DR3_DQ34_NO_ODT	Signa
DQ2	10101010	0.5T		DDR3_DQ34_NO_ODT	Signa
DQ3	10101010	0.5T		DDR3_DQ34_NO_ODT	Signa
DQ4	10101010	0.5T		DDR3_DQ34_NO_ODT	Signa
DQ5	10101010	0.5T		DDR3_DQ34_NO_ODT	Signa
DQ6	10101010	0.5T		DDR3_DQ34_NO_ODT	Signa
DQ7	10101010	0.5T		DDR3_DQ34_NO_ODT	Signa

8. Click **OK**.

9.7.3.1 Timing Parameters Definition

The **Timing Budget** form allows you to enter the timing specifications for the project. The timing specifications associated with the transmitting component enables worst-case phase shifts to be applied on the Timing Reference signal to simulate worst case timing conditions. The timing specifications associated with the receiving component allow final timing margins to be computed.

The **Timing Budget** form has different fields depending on **Write** or **Read** case.

• For the Write case (also applies to AddCmd and Ctrl buses), the fields appear as follows:

Write Read			
-Driving (ns)	Receiving (ns)	Skew Budget (ns)	
Min Transmit Setup:	Min Receive Setup:	Setup:	Default
Min Transmit Hold:	Min Receive Hold:	Hold:	

• The **Driving** and **Receiving** parameters are as follows:

- Min Transmit Setup This is the minimum amount of setup time that is guaranteed to exist between the signals and their Timing Reference at the driving component, Controller.
- Min Transmit Hold This is the minimum amount of hold time that is guaranteed to exist between the signals and their Timing Reference at the driving component, i.e. the Controller.
- Min Receive Setup This is the amount of setup time required between the signals and their Timing Reference at the receiving component, i.e. the Memory. This is typically given in data sheets as "tDS(base)" for Data buses and "tIS(base)" for AddCmd buses.
- Min Receive Hold This is the amount of hold time required between the signals and their Timing Reference at the receiving component, i.e. the Memory. This is typically given in data sheets as "tDH(base)" for Data buses and "tIH(base)" for AddCmd buses.
- The **Skew Budget** is automatically calculated from the parameters above, and is intended to show the user how much skew can be introduced by the interconnect while still meeting timing requirements. These are calculated as follows:
 - Setup (Skew Budget) = Min Transmit Setup Min Receive Setup
 - Hold (Skew Budget) = Min Transmit Hold Min Receive Hold
- The **Default** button can be used when data sheets or timing specs are not available. Using this button populates these fields with typical values by simply allocating one third of the Signal Bit Period for Transmit Setup/Hold and one quarter of the Signal Bit Period for Receive Setup/Hold.
- For the **Read** case for Data buses, the following fields are available:

Write Read				
Receiving (ns)		Driving (ns)	 Skew Budget (ns)	Default
Min Receive Setup:	· · · · · · · · · · · · · · · · · · ·	tDQSQ:		
Min Receive Hold:		tQH:		
Max Receive Skew (+):		Transmit Skew (+):	(+):	
Max Receive Skew (-):		Transmit Skew (-):	(-):	

- 1. The **Receiving** and **Driving** parameters are as follows:
 - Max Receive Skew (+) This is the maximum amount by which the Data is allowed to lag the Strobe at the receiving component, i.e. the Controller.
 - Max Receive Skew (-) This is the maximum amount by which the Data is allowed to lead the Strobe at the receiving component, i.e. the Controller.
 - Transmit Skew (+) This is the maximum amount that the Data will lag the Strobe signal at the driving component, i.e. the Controller. This is derived from the "tDQSQ" parameter commonly found in data sheets for the Memory.
 - Transmit Skew (-) This is the maximum amount that the Data will lead the Strobe signal at the driving component, i.e. the Controller. This is derived from the "tQH" parameter commonly found in data sheets for the Memory
- 2. The **Skew Budget** is automatically calculated from the parameters above for both the leading and lagging case, and is intended to show the user how much skew can be introduced by the interconnect while still meeting timing requirements. These are calculated as follows:
 - ➤ (+) (Skew Budget) = Max Receive Skew (+) Transmit Skew (+)
 - ➤ (-) (Skew Budget) = Max Receive Skew (-) Transmit Skew (-)

3. The **Default** button, to be used when data sheets or timing specs are not available, populates these fields with typical values by simply allocating one tenth of the Signal Bit Period for Transmit Skew and one quarter of the Signal Bit Period for Receive Skew.

9.7.3.2 Stimulus Offset Options

The available **Stimulus Offset** options vary based on whether the **Controller** or the **Memory** is driving the bus.

• In cases where the **Controller** is driving the bus, the Stimulus Offset options are listed as the follows:

Controller Memory						V
Bus Group/Signal	Stimulus Pattern	Stimul	us Offset (ns) 🕴 1	Fransmit IO Model	Status	
🖃 🗹 Data0	10101010	0.5	Defeat			
MEMC_MDQ0	10101010	0.5	Default	_maxdrv_io	Signal	
MEMC_MDQ1	10101010	0.5	Ideal	_maxdrv_io	Signal	
MEMC_MDQ2	10101010	0.5	Worst Case Setup	Pmaxdrv_io	Signal	
MEMC_MDQ3	10101010	0.5	Worst Case Hold	_maxdrv_io	Signal	
MEMC_MDQ4	10101010	0.5	Aligned	_maxdrv_io	Signal	
MEMC_MDQ5	10101010	0.5	None	_maxdrv_io	Signal	
MEMC_MDQ6	10101010	0.5.		maxdrv_io	Signal	
	10101010	0.57			C	

- Default The Timing Reference signal (ex. strobe) is positioned in the middle of the bus signals' eye. For example, in the case of a Data bus, the strobe would be set to lag the data by a quarter clock cycle.
- Ideal Similar to the Default offset, but the buffer delays for the signal are taken into account to make the desired stimulus offset (ex. quarter clock cycle) more exact.

For a Data Bus group, if the Stimulus Offset is set to either Default or Ideal, following best case timing reports are generated.

- Timing Report Best Case Timing
- Timing Report Best Case Eye Height
- Worst Case Setup Stimulus offsets are made to replicate the Min Transmit Setup value specified in the Timing Budget form, accounting for buffer delays. This should represent the worst case setup condition.
- Worst Case Hold Stimulus offsets are made to replicate the Min Transmit Hold value specified in the Timing Budget form, accounting for buffer delays. This should represent the worst case hold condition.
- Aligned All signals (including Timing Reference) are perfectly aligned at the driving component, accounting for buffer delays.
- > None Stimulus offsets are all set to zero.
- If the **Memory** is driving the bus, following Stimulus Offset options are available:

Controller Memory					×
Bus Group/Signal	Stimulus Pattern	Stimulus C)ffset (ns)	Transmit IO Model	Status
🖃 🗹 DataL	10101010	0.5T			
DQ0	10101010	0.5T	None		Signal
DQ1	10101010	0.5T	Aligned		Signal
DQ2	10101010	0.5T	Worst Cas	e Transmit Skew (+)	Signal
DQ3	10101010	0.5T	Worst Cas	e Transmit Skew (-)	Signal
DQ4	10101010	0.5T	Default		Signal
DQ5	10101010	0.5T			Signal
DQ6	10101010	0.5T	Ideal		Signal
					•

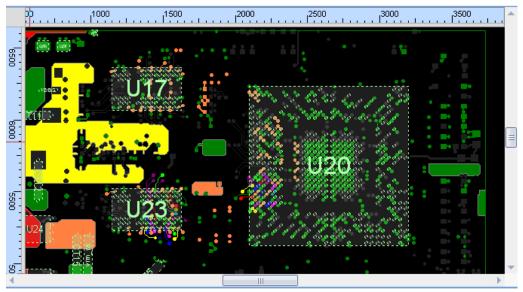
- ▶ None Stimulus offsets are all set to zero.
- Aligned All signals (including Timing Reference) are perfectly aligned at the driving component, accounting for buffer delays.
- Worst Case Transmit Skew (+) Stimulus offsets are made to replicate the Transmit Skew (+) value specified in the Timing Budget form, accounting for buffer delays. This should represent the worst case skew condition, where the data signals lag the strobe.
- Worst Case Transmit Skew (-) Stimulus offsets are made to replicate the Transmit Skew (-) value specified in the Timing Budget form, accounting for buffer delays. This should represent the worst case skew condition, where the data signals lead the strobe.
- ➢ Default Same as above.
- ▶ **Ideal** Same as above.

NOTE! In the case of a **Data** bus, either can drive, so **Stimulus Offsets** can be defined for the **Controller** on a **Write** simulation, and for the **Memory** on a **Read** simulation.

Now we are finally ready to perform some simulations on the bus.

9.8 Restore Defaults

The Restore Defaults button can be used to restore all the changed values in the Analysis Options dialog box to the default values.


• Au	tion Name- tomatic stom	
Restore	Defaults)

Using Restore Defaults button however, does not change the bus type selected in the Simulation Configuration section.

Simulation Configuration				
Bus Type:	- ⊻			
Corner Dire				

9.9 Simulation

The bus has now been fully defined. Recall that it consists of a Controller (U20), Memory (U23) and VRM on a PCB. The sample looks like this.

Initially, we will use **Ideal Power**, ignoring the PDN and VRM in this configuration.

9.9.1 Explore Sweep Manager

Select Tools — Sweep Manager....

	Too	ls Window Help				
¥ĸ		Simulation				
1		Timing Budget				
		S Parameter Extraction				
		S Parameter Viewer				
		Sweep Manager				
		Model Builder				
		Result Browser				
		Report Generator				
		Options •				

The Sweep Manager interface opens.

veep Mode:	Circuit Simulation	-	Swe	eep List:	Total Iterat	ions: 1	Run Swe	
veep Type:	Bus Parameters	-		Sweep Element	Sweep Type	Iteration	IdealPower	
Property		Value		DataBus>IdealPower	Option	V 1	On	
ideal Power		On						
Data Rate (Gb	ps)	0.6						
# of Bits		8						
(111				•			
a dala aliali an i	a parameter item t	the real of the last	Cala	ect some sweep items and right click on the list to group, ungro	oup or delete	Click the ch	ackbox to calact or	unselect an iteration

The Sweep Manager interface has three sections:

- Adding Parameter
- Sweep List
- Total Iterations

9.9.1.1 Sweep Type

There are four Sweep Types:

- Bus Parameters(selected by default)
- Controller Parameters
- Memory Parameters
- Spice Model

eep Mode:	Circuit Simulation 🗾 💌	Swe	ep List:		Т	otal Iterati	ons: 0	Run Sweeps
	lus Parameters 🗾 🔻		Sweep Element	Sweep Type		Iteration		
ata Rate (Gt M	us Parameters ontroller Parameters femory Parameters pice Models							
		•	t some sweep items and right click on the list to group, ungr				eckbox to select or uns	

Depending on the **Sweep Type** chosen, you can double-click a parameter to add to the **Sweep List**. In the following example, the sweep name appears in the **Sweep List** if you double-click **Stimulus Offset**.

Sweep Manage	r										_ 🗆 ×
Settings R	esults										
Sweep	Circuit Simu	ulation	•	Swe	eep List:				Total Iterat	ions: 1	Run Sweeps
Sweep Type:	Controller P	Parameters	•		Sweep Element	Sweep Type	Min	Max	Iteration	IdealPower	
Group: DataL	👻 Sign	al [All]	•		DataBus>IdealPower	Option			V 1	On	
Property		Value									
Stimulus Patt		10101010									
Stimulus Offs	set	0.5T									
	111		₽	•							
Double click or to 'Sweep List'		er item to add	l it	Sele dele	ect some sweep items and right click ete.	on the list to g	roup, ungri	oup or	Click the ch iteration.	eckbox to select or	unselect an
										OK Can	cel Apply
Analysis Optic	ons Sweep	Manager									

9.9.1.2 Sweep List

- 1. To choose parameter values, select the Sweep item from the Sweep List and go to the next section. The **Sweep List** pane contains these items:
 - Sweep Element Identify the Sweep Type and parameter or model selected.
 - Sweep Type Choose from the drop-down menu.
 - Step Count Number of different values for each parameter.
 - Min, Max, Step, and Value List Related element values.

Sweep Manager											_ 🗆 ×
Settings Re:			_								
	Circuit Simu		S	weep List:				Т	otal Iterat	ions: 1	Run Sweeps
Sweep Type:	Controller F	arameters		Sweep Element	Sweep Type	Min	Max	1	Iteration	IdealPower	
Group: DataL	👻 Signa	al [All]	-	DataBus>IdealPower	Option				V 1	On	
Property		Value	1								
Stimulus Patte	m	10101010									
Stimulus Offse	et 🛛	0.5T									
			╟								
			ŀ								
4	111			ا ل							
Double click on a to 'Sweep List'.		r item to add it		elect some sweep items and right click elete.	on the list to gr	oup, ungr	oup or		lick the ch eration.	eckbox to select or	unselect an
	OK Cancel Apply										
Analysis Option	Analysis Options Sweep Manager										

2. Sweep of the **Corner**, **Direction** and **Rank** can only be defined from the **Analysis Options** for sweep.

For projects with VRM blocks, the **IdealPower** is added to the **Sweep List** automatically.

weep Mode: Circuit	Simulation	-	Sweep List:						Total Iterat	ions: 4		Run Sweeps
weep Type: Bus Pa	rameters	-	Sweep Element	Sweep Type	Min	Max	s	Value List	Iteration	IdealPower	Corner	Direction
Property	Value		DataBus>IdealPower	Option		E		On	V 1	On	Тур	Write
Ideal Power	On		DataBus>Corner	Option				Typ,Slow	V 2	On	Slow	Write
Corner	Тур		DataBus>Direction	Option				Write,Read	🔽 3	On	Тур	Read
Direction	Write								V 4	On	Slow	Read
Data Rate (Gbps)	0.6											
# of Bits	8											
		_										
۱ II		•	•	111				•				

3. Double-click a box under the Value List column (IdealPower selected in this example).

The **Parameter** editing window opens.

Parameter - Ideal Power		×
Ideal Power	1	Value List
On		On
Off	_	
	>>	
	-	
		OK Cancel

You can:

- Select a value in the **Ideal Power** column and click >>> to add it to the **Value List** column.
- Use the \Join button to delete the selected value.
- Use the 1 or 1 button to move up or down the value.
- 4. Click OK to close the window without making any modifications.

9.9.1.3 Total Iterations

Total Iterations are the total number of simulations to be performed. In the following example, 4 Iterations will be performed.

ep List:					Total Iterat	Run Sweeps		
Sweep Element	Sweep Type	Min	Max S	Value List	Iteration	IdealPower	Corner	Direction
DataBus>IdealPower	Option		E	On	V 1	On	Тур	Write
DataBus>Corner	Option			Typ,Slow	V 2	On	Slow	Write
DataBus>Direction	Option			Write,Read	V 3	On	Тур	Read
					V 4	On	Slow	Read

1. Right-click on the **Total Iterations** spreadsheet.

Two options **Export Settings...** and **Import Settings...** are available in the pop-up menu list.

									_ 🗆 ×
					Total Iterat	ions: 4		R	un Sweeps
ер Туре	Min	Max	s	Value List	Iteration	IdealPo	ower	Corner	Direc
ion				On	V 1	On		Тур	Writ
ion				Typ,Slow	V 2	On		Slow	Writ
ion				Write,Read	🔽 3	On		Тур	Rea
					V 4	On		Slow	Rea
							Select A	JI	
							Deselec	t All	
							Select A	II Highlight	ad Items
111				•		_			
	the list to r		upgrou	p or delete.	Click the ch	eckbe	Deselec	t All Highlig	nieu Items
grie click off	une lise co y	group,	ungroc	p or delete.	Click the th	CCNDI	Export S	Settings	
					_		Import	Settings	
					- F	OK		Cancel	Apply

They are used to export and import the Iteration settings in the csv file.

2. Click **Export Settings...**.

The **Export settings** window opens.

Export settings							×
😪 🌍 – 📙 « Syste	emSI	Parallel Bus Analysis Tr	utorial 🕨 result 🕽	• • • • S	earch result		Q
Organize 🔻 New	folder						• (?)
😺 Downloads Recent Places 🧟 My Site	*	Name 🔹		Date modified 2/21/2013 4:09 PM	Type File folder		Size
 ➢ Libraries ➢ Documents ➢ Music ➢ Pictures ☑ Videos 	E						
Local Disk (C:) Local Disk (D:) File <u>n</u> ame:		<		III			,
Save as <u>t</u> ype:							•
) Hide Folders					Save	Can	cel

- 3. Click **Save** to save a csv file listing all the possible iterations.
- 4. Open the saved csv file.

0) 🖬 🤊	· (° ·) ∓	Tota	alIterationsSe	tting - Micr	rosoft Excel			-	•	x
	Home	e Insert	Page Layo	ut Form	ulas Da	ata Revie	ew Vie	w	0	- 6	X
	ste	Calibri • B I U • E • Ont		■ = = ■ = = 律 律 ≫ Alignment	• • • • • • • • • • • • • • • • • • •	eneral ▼ ▼ % ▼ 8 \$0 Jumber 5	Ť		Σ ▼ ↓ √ Edit		
	A1	• (•	<i>f</i> ∝ Iteratio	on						≈
	А	В	С	D	E	F	G	Н		1	
1	Iteration	IdealPower	Corner	Direction							
2	1	On	Тур	Write							
3	1	On	Slow	Write							
4	1	On	Тур	Read							
5	1	On	Slow	Read							=
6											
7											

- The number 1 in the Iteration column indicates this iteration is enabled in the Total Iterations spreadsheet
- The number 0 in the Iteration column indicates this iteration is disabled in the Total Iterations spreadsheet
- 5. Change the **Iteration** value of the first row to **0** as follows, and save the file.

	A	В	С	D	
1	Iteration	IdealPower	Corner	Direction	
2	0	On	Тур	Write	
3	1	On	Slow	Write	
4	1	On	Тур	Read	
5	1	On	Slow	Read	
6					

6. Click **Import Settings...** in the **Sweep Manager** window.

Total Iterat	ions: 4		F	tun Sweeps	
Iteration	IdealP	Corner		Direction	
✓ 1✓ 2	On On	Typ Slow		Write Write	lemory
<mark>▼ 3</mark> ▼ 4	On On	Typ Slow		ct All All Highligh	ited Items ghted Items
▲		111		Settings Settings	

The Import settings window opens.

J in Syste	m51 •	Parallel Bus Analysis 🕨 Tutorial 🕨 result	► ▼ ⁴9 [3	earch result	<u> </u>
Organize 🔻 New 🕯	folder			== •	1 0
🔆 Favorites	<u> -</u>	Name	Date modified	Туре	Size
🧮 Desktop		📙 ac	2/21/2013 4:09 PM	File folder	
〕 Downloads	1	🖺 TotalIterationsSetting.csv	3/22/2013 3:05 PM	Microsoft Office E	
🔚 Recent Places					
🧟 My Site					
🥽 Libraries	E				
Documents					
Music					
Pictures					
😸 Videos					
🖳 Computer					
🏜 Local Disk (C:)					
💼 Local Disk (D:)	+ +		III		
	ile <u>n</u> ame	1	✓ CSV	Files(*.csv)	

7. Choose the saved csv file, and click **Open**.

The settings of iterations in the csv file are shown in the **Total Iterations** spreadsheet.

Total Iterations: 3 Run Sweeps							
Iteration	IdealP	Corner	Direction				
1	On	Тур	Write				
V 2	On	Slow	Write				
V 3	On	Тур	Read				
7 4	On	Slow	Read				

The first row of **Iteration** is disabled.

NOTE	The csv file to be imported must match the content of the Total Iterations
NOTE!	spreadsheet; otherwise an error message will display to show its failure.

9.9.1.4 Results

• After all simulations are done, click the **Results** tab to display the results.

Iteration	Folder	Max Overshoot	Min Ringback M	Min Ringback M	Eye Aperture (Min Setup Margin	Min H
✓ 1	result\1\Data_Write_Typ_Typ_1						
2	result\1\Data_Write_Typ_Typ_2						
✓ 3	result11Data_Write_Slow_Slow_3						
4	result\1\Data_Write_Slow_Slow_4						
🗹 5	result\1\Data_Write_Typ_Typ_5						
6	result\1\Data_Write_Typ_Typ_6						
7	result\1\Data_Write_Slow_Slow_7						
8	result\1\Data_Write_Slow_Slow_8						
•)

• To view curves such as Eye contour and Bathtub curves, check one or more iterations and click Show Result...

9.9.1.5 Grouping Parameters

You can group two or more parameters to reduce the number of iterations.

For example, the Corner and Data Rate can be grouped together.

- 1. Select two rows (**Corner** and **Data Rate** in this example).
- 2. Right-click the selected rows and select **Group** in the pop-up menu.

weep Mode:	Circuit Simulation		• Sv	veep List:						Total Iterat	ions: 8	Run	Sweep:
weep Type:	Bus Parameters	•	•	Sweep Element	Sweep Type	Min	Max	S	Value List	Iteration	IdealPower	Corner	D
Property		Value		DataBus>IdealPower	Option				On,Off	✓ 1	On	Тур	(
Ideal Power		On		DataBus>Corner	Option				Typ,Slow	2	Off	Тур	(
Corner		Тур		DataBus>DataRate					0.8,1.2	🗹 3	On	Slow	(
Data Rate (G	ops)	1			Group					✓ 4	Off	Slow	(
# of Bits		8	_		Delete					🗹 5	On	Тур	1
										6	Off	Тур	1
										7	On	Slow	1
										8	Off	Slow	:
٠	111	1		l	111				•	•	111		

The number of **Total Iterations** drops from 8 to 4.

eep Mode: Circuit S	imulation 🔻	Swe	ep List:							Total Iterat	ions: 4		Run Sweep
eep Type: Bus Para	meters 👻		Sweep Element	Sweep Type	Min	Max	Step	Value List	Step Count	Iteration	IdealPower	Corner	DataRat
roperty	Value		DataBus>IdealPower	Option				On,Off	2	V 1	On	Тур	0.8
deal Power	On	Ē	group1						2	V 2	Off	Тур	0.8
orner	Тур	-	DataBus>Corner	Option				Typ,Slow	2	✓ 3	On	Slow	1.2
ata Rate (Gbps)	1	- L.	DataBus>DataRate	Parameter				0.8,1.2	2	✓ 4	Off	Slow	1.2
of Bits	8												
					1					•			
uble click on a parame	ter item to add it to	Sele	ct some sweep items and	d right dick on t	he list t	o aroup	, unara	up or delete		Click the ch	eckbox to select	or unselect an i	teration.

Originally, the iterations look like this:

India teradoris, o						
Iteration	IdealPower	Corner	DataRate			
✓ 1	On	Тур	0.8			
🖌 2	Off	Тур	0.8			
🗹 З	On	Slow	0.8			
4	Off	Slow	0.8			
🗹 5	On	Тур	1.2			
6	Off	Тур	1.2			
7	On	Slow	1.2			
8	Off	Slow	1.2			

After grouping the Corner and Data Rate, the new iterations are:

Iteration	IdealPower	Corner	DataRate
✓ 1	On	Тур	0.8
2	Off	Тур	0.8
🖌 3	On	Slow	1.2
4	Off	Slow	1.2

When combining two or more parameters in a group:

- The first value for each parameter in the group constitutes one combination.
- The second value for each parameter constitutes the second iteration.

.

NOTE! Within a group, the value in the **Step Count** column of each parameter must be identical. Or else, the **Total Iterations** of the group will be **0**.

9.9.1.6 Model Sweep

The Sweep Manager supports different types of Model Sweep.

Use the Sweep Type drop-down list to select to type of sweep. For this tutorial, select Spice Models.

veep Mode:	Circuit Simulation	Swe	ep List:			Total Iterat	ions: 1	Run Sweeps
veep Type:	Spice Models 🗾		Sweep Element	Sweep Type	Min	Iteration	IdealPower	
	Bus Parameters Controller Parameters		DataBus>IdealPower	Option		✓ 1	On	
	Memory Parameters							
PCB	Spice Models							
EBD1	D:\simu\SPEEDXP12.0\SSI							
VRM1	D:\simu\SPEEDXP12.0\SSI							
(111	•			•			
ouble click on	a component to add it to 'Sweep	Sele	ct some sweep items and right click on the list to group, ungr	oup or delete.		Click the ch	eckbox to select o	unselect an iteration.
ť.								

For Spice Models, there are 3 kinds of Model Sweep:

- Model File sweep Sweep different .sp or .ckt files defined in the blocks (such as the EBD1 block and VRM1 block).
- **.Inc** sweep Sweep multiple circuit models if the original model is called within an **.include** statement (such as the **PCB** block including three **.include** statements).
- **Parameter** sweep Sweep different parameters defined in the .sp file (such as Voltage in the VRM block).

Model File Sweep

When using the **Model File** sweep, make sure that the connectivity inside each **.sp** file is the same to maintain everything between *[MCP Begin] and *[MCP End].

Click the **New** button to add model files.

меер Мос	de: Circuit Simulation	-	Swe	eep List:	🗂 🔀	1 4	Total Iterat	ions: 2	Run	Sweeps
меер Тур	e: Spice Models	-		Sweep Element	Sweep Type	Min	Iteration	IdealPower	PCB>GSP_PA	
Model F	ile O.Inc OParame	eter		DataBus>IdealPower	Option		✓ 1	On	Spice_1.ckt	
PCB EBD1	Model file D:\simu\SPEEDXP12 D:\simu\SPEEDXP12 D:\simu\SPEEDXP12	.0\\$\$I\\$\$I1	1	ModelIncludeFileSweep>PCB2C:\Users\Chase\Document C:\Documents and Settings\jieliu\Desktop\Spice_1.ckt C:\Documents and Settings\jieliu\Desktop\Spice_2.ckt	File		2	On	Spice_2.ckt	
uble click	III k on a component to add	d it to 'Sweep	Sele	III ect some sweep items and right click on the list to group, ungro	up or delete.	•	Click the ch	eckbox to select	or unselect an iteration.	

.Inc Sweep

When using **.Inc** sweep, make sure that the sub-circuits inside **.ckt** or **.sp** files all have the same name.

Click the **New** button to add circuit files.

weep Mode:	Circuit Simulation	-	Sweep	List:	2	1	Total Iterat	ions: 2		lun Sweeps
weep Type:	Spice Models	-	s	weep Element	Sweep Type	Min	Iteration	IdealPower	PCB>GSP_PA	
Model File	⊙.Inc ○Parameter		D	ataBus>IdealPower	Option		✓ 1	On	Spice_1.ckt	
lock: PCB		-	M	todelIncludeFileSweep>PCB>C:\Users\Chase\Document C:\Documents and Settings\jieliu\Desktop\Spice_1.ckt	File		2	On	Spice_2.ckt	
Include Com.	Circuit File	Line		C:\Documents and Settings\jieliu\Desktop\Spice_2.ckt						
C:\Users\Cha	\\SSIGspic	1488 1992								
	an include file to add it to			some sweep items and right click on the list to group, ungro		Þ			r unselect an itera	

Parameter Sweep

weep Mode:	Circuit Simulation	-	Sweep List:							Total Iterat	ions: 4		Run Sweeps
weep Type:	Spice Models	-	Sweep Element	Sweep Type	Min	Max	Step	Value List	Step C	Iteration	IdealPower	VRM>Voltage	
Model File	.Inc Parameter		DataBus>Ide					On	1	1	On	1.2	
ock: VRM		-	ModelParame	Parameter	1.2	1.8	0.2		4	2	On	1.4	
OCK: WRM										🖌 3	On	1.6	
Parameter	Value	Circuit File								✓ 4	On	1.8	
Voltage	1.5	D:\simu\SPEE											
4		- ▶	•						•				

9.9.2 Initial Simulation

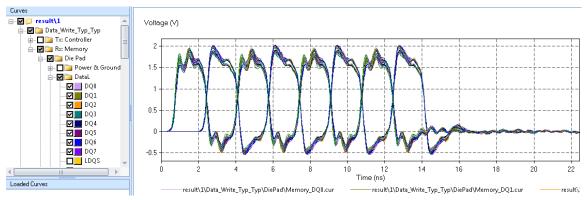
1. Click the **Play** button **D** = .

The warning message dialog pops up again.

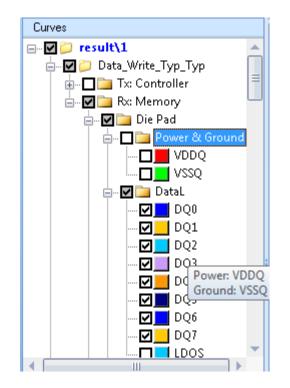
SystemSI	
?	To calculate the Worst Case Stimulus Offset for the Controller Bus Group, the following specs need to be specified for the Data: Min Transmit Setup Min Transmit Hold
	Do you want to verify the specs using the 'Timing Budget' tool?
	<u>Y</u> es <u>N</u> o

2. Click No.

The frequency response reminding message dialog pops up.


SystemSI	
?	The frequency response is needed for the DDR measurement and report. Do you want to do the frequency analysis now?
	Yes No

3. Click No. (If you want to do the frequency analysis, please refer to *Section 9.8.6 Frequency Response*.)


The simulation starts, showing a **simulation_input.sp** window.

•	simulat	ion_input.	sp						×
Eile	⊻iew	<u>A</u> nalysis	Options	<u>H</u> elp				cāden	ce
: 00									
		0 00:0	D:28 Remain	ning	0 00:00:05 Elapsed	Time Step:	116,	2.320000e-009	

At the conclusion of the simulation, waveforms are plotted in a 2D Curves (Time Variation) window.

The powers and grounds of the Controller and Memory blocks will be displayed, and each signal will have a tip to show its power and ground.

9.9.3 Running Multiple Sweep

This section describes how to sweep multiple parameters and across capability. The following parameters and values are to be set.

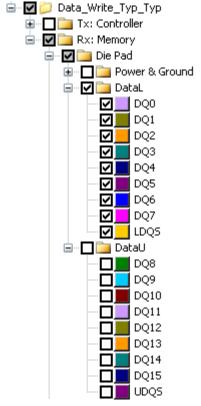
- IdealPower: On, Off
- Corner: Typ, Slow
- Data Rate: 0.8, 1.2

Curren Turner	D D		-	5weep List:				-						lun Swee
Sweep Type:	Bus Parameters		<u> </u>	Sweep Element	Sweep Type	M	Μ.	5	Value List	Step		IdealPower	Corner	D
Property		Value		DataBus>IdealPo	Option				On,Off	2	✓ 1	On	Тур	0
Ideal Power		On		DataBus>Corner	Option				Typ,Slow	2	2	Off	Тур	0
Corner		Тур		DataBus>DataRate	Parameter				0.8,1.2	2	🖌 3	On	Slow	0
Data Rate (Gb	ops)	1									✓ 4	Off	Slow	0
# of Bits		8									✓ 5	On	Тур	1
											✔ 6 ✔ 7	Off	Тур	1
											7	On	Slow	1
											8	Off	Slow	1
4	111		•	•						Þ	•			

Click Run Sweeps to begin the sweep simulation.

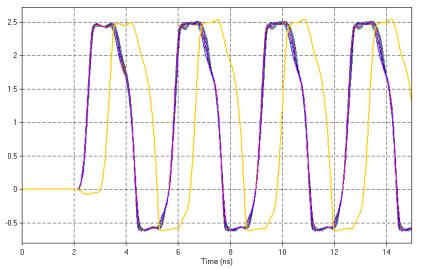
After the simulations are run, the results appear in the **Results** pane. The results from the first sweep are now found under the **History** tab.

Current Hist	tory				E	oport Show F	esult
Iteration	Folder	Max Overshoot	Min Ringback M	Min Ringback M	Eye Aperture (Min Setup Margin	Min H
✓ 1	result\1\Data_Write_Typ_Typ_1						
2	result\1\Data_Write_Typ_Typ_2						
🖌 3	result\1\Data_Write_Slow_Slow_3						
4	result\1\Data_Write_Slow_Slow_4						
🗹 5	result\1\Data_Write_Typ_Typ_5						
6	result\1\Data_Write_Typ_Typ_6						
7	result\1\Data_Write_Slow_Slow_7						
8	result\1\Data_Write_Slow_Slow_8						
4							
	III It' button to show the results of the checked itera						


9.9.4 Data Presentation / 2D Curve Viewer

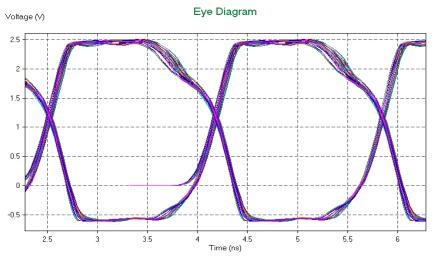
Data for each signal in the bus can be individually selected and viewed as either a raw waveform, or Eye diagram.

1. In the 2D Curves Window the Left Pane lists simulation results including each signal in our two Data buses. Turn these off by right-click and selecting **Hide All Curves**.


Show All Curves
Hide All Curves
Result Browser
Reset All Curves' Colors
Load Curve Pattern
Save Current Patten

2. Then select only the **DataL** signals.

We see the data plotted.

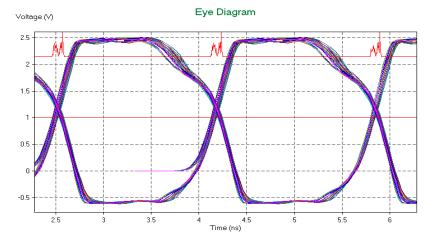


3. Now turn the Strobe trace off, (LDQS).

4. Switch to an Eye diagram plot by selecting the Icon from the Toolbar.

July 2014

5. With the Eye Diagram visible, the toolbar now has additional measurement and data processing functions available.


🕶 🕶 🌲 🂲 🧌 🔁 🏫 🗔 🔣 🖸 Time Domain 🛛 🔻	DDR Threshold: <none></none>	▼ 🗰 Mask: <none></none>	▼ Type: Regular Eye ▼ 🕅
Jitter: Display Mode: <none> 🔻 V Measure 0.000</none>			
DDR Eve Measurement: UI (ps): 1000 Trigger Period: TimingRef	▼ Eve Aperture: Tranezoid ▼ Min Tac Width	(% of UI):50 Range (ps):0	~ Offset (ps): 0 # of Period: 2 🚔

We can specify an Eye Contour or Eye Density plot, overlay an Eye Mask, or measure Eye Opening including Trigger Period, Eye Aperture, Min Tac Width, Offset And No. of Period. We can also look at Jitter.

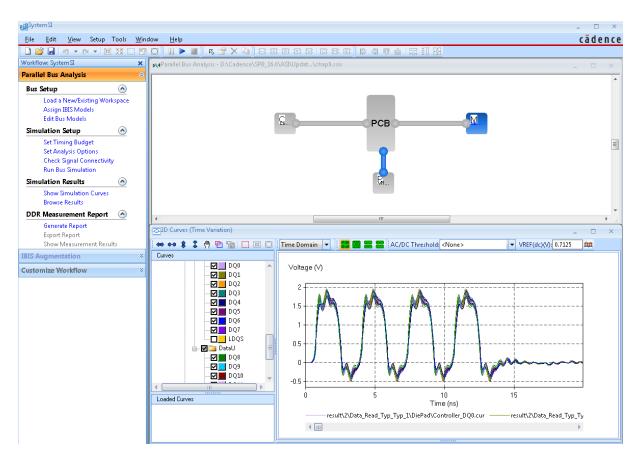
- 6. Set **VMeasure** to **1V**, which is the center of the voltage swing.
- 7. Select **Density** as **Jitter: Display Mode** to overlay a Jitter estimate on the Eye Diagram.

We get a plot with Jitter Density displayed on the screen.

NOTE!	As multiple simulations are run, results are kept in SystemSI and will cause the
NOIE:	data curves to add up quickly. (1) Use the "+" and "-" button to minimize and maximize signals in the bus. (2) Right-click to "Hide All Curves" and select

only the ones that are desired. (3) Close the Curve window to clear the data and
start over in a new Curve window if needed.

9.9.5 Simulation Directory


Each simulation creates a unique directory (1, 2, 3 ...etc) with all the waveform files under: \<case name>\result.

By default, these directories are moved to the **history** folder when opening an existing workspace file. However, you can make the following setup by choosing **Tools** > **Options** > **Edit Options...**, and clicking **Result** under **Simulation**.

Options	:	×
Simulation General Result	Change the 'Result' options in Parallel Bus	
Measurement Report Generate Report	Perform the following operation when openning an existing workspace file	
	Perform the tollowing operation when openning an existing workspace file One of the previous simulation results under the "result" folder One of the previous simulation results under the "result" folder One of the previous simulation results under the "result" folder One of the previous simulation results under the "result" folder One of the previous simulation results under the "result" folder One of the previous simulation results under the "result" folder One of the previous simulation results under the "result" folder One of the previous simulation results under the "result" folder One of the previous simulation results under the "result" folder	
	Default Apply OK Cancel	

The first one is checked by default.

The following figure shows the waveforms generated by the bus engine. This illustration is the default display.

To show the waveforms, choose

Window > Tile Horizontally/Vertically

or

Window > Cascade

On the Windows menu, click To Default to arrange all open windows to the default display.

Basically, the .ssix, .html and .txt windows should be put together at the top, and other curve windows should be put together at the bottom.

9.10 Additional Exercises

A handful of simple experiments are performed on this sample, to introduce the user to the power of SystemSI - Parallel Bus Analysis.

9.10.1 BER Analysis for DDR4 Interfaces

Using SystemSI – Parallel Bus Analysis, you can perform channel simulations for DDR4 Data Bus Write operations.

1. To enable channel simulations, select the *Use Channel Simulation for Data Bus Write* check box in the Analysis Options dialog box.

2. Specify the values of channel simulation options that are enabled in the Analysis Options dialog box, and click *Apply*.

	Simulation Configuration Data Bus Write
	Ignore Time: 200 ns # of Bits: 100000 Bit Sampling Rate: 32 BER Floor: 1e-16
	# of Bits for Display: 100
	Eye Distribution Method Time Domain Waveform O Statistical
	BER_Eyes
	Criteria Time scale (eye width) Voltage scale (eye height)
Characterization Duration: 30 ns Vmeas: V	LBERs: -12

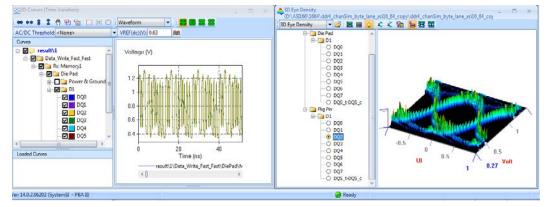
- 3. After you perform Step 2, following options are enabled.
 - a) Option to add AMI model to Controller block.

С	•	
Cor	2	Property
÷		Add AMI
		Insert Component Between Add Connection Between
	×	Delete
		Сору

The AMI model added to the Controller block is applied to all Data signals. Strobe signals are excluded.

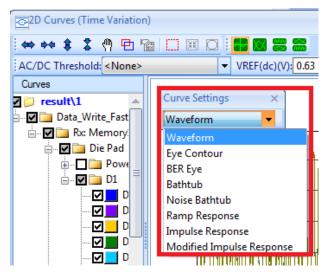
b) Ability to define jitter and noise injection parameters for the strobe and data signals.

Jitter and noise for strobe signals is defined in the *Strobe Jitter and Noise* tab of the Property dialog box for the Controller block. To specify jitter and noise for the Data signals, use the *Data Jitter and Noise* tab, visible in the Property dialog box for the Memory block.


c) The Channel Characterization option is visible in the Tools menu.

Тос	ols Window Help
	Channel Characterization
	Bus Simulation
	Timing Budget
	Write Leveling
	Frequency Response
	S Parameter Extraction
	S Parameter Viewer
	Sweep Manager
	Layout Association
	Result Browser
	Report Generator
	Options •

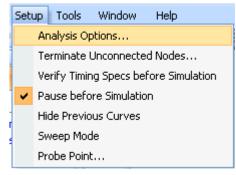
Before you simulate the design, you can characterize the channel to ensure all design modifications are accounted for.


4. Simulate the design.

Channel simulation results are displayed in the 2D Curves and 3D Eye Density windows.

In addition to raw waveforms, channel simulation also generates additional outputs, such as Ramp and impulse responses, Eye contours for the entire high capacity simulation, Jitter and noise bathtub curves, to predict BER performance, and BER_Eyes (if specified in the Analysis Options form), for review.

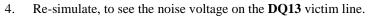
To view these, select appropriate option from the drop-down list in the *Curve Settings* toolbar of the 2D Curves (*Time Variation*) window.

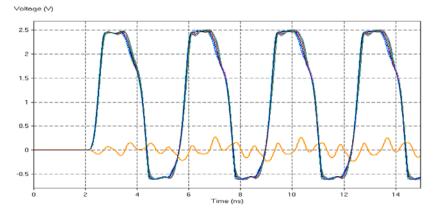

5. Post simulation, you can also generate simulation reports.

9.10.2 Crosstalk

Simulate the crosstalk on a victim line in the bus.

Turn off one of the DQ lines by editing the Stimulus pattern, then re-simulate and see the coupled noise voltage on the victim line.


1. Open the Analysis Options by selecting Setup — Analysis Options.



2. For the **DataU Bus**, scroll to the **DQ13** signal, and change the pattern to Zero as shown below.

Controller Memory		Ľ	Memory Blocks Share IC
Bus Group/Signal	Stimulus Pattern	Stimulus Offset (ns)	Transmit IO Model
DQ7	10101010	0.5T	DDR3_DQ34_NO_ODT
🔤 LDQS	10	0.75T	DDR3_DQS34_NO_OD1
🖃 🗹 DataU	10101010	0.5T	
DQ8	10101010	0.5T	DDR3_DQ34_NO_ODT
DQ9	10101010	0.5T	DDR3_DQ34_NO_ODT
✓ DQ10	10101010	0.5T	DDR3_DQ34_NO_ODT
✓ DQ11	10101010	0.5T	DDR3_DQ34_NO_ODT
✓ DQ12	10101010	0.5T	DDR3_DQ34_NO_ODT
🗹 DQ13	00000000	0.5T	DDR3_DQ34_NO_ODT
✓ DQ14	10101010	0.5T	DDR3_DQ34_NO_ODT
✓ DQ15	10101010	0.5T	DDR3_DQ34_NO_ODT
UDQS	10	0.75T	DDR3_DQS34_NO_OD
<	111		

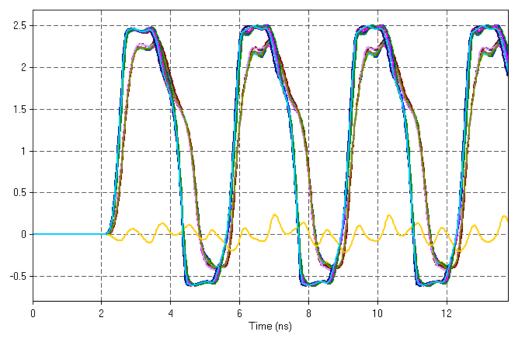
3. Click **Apply** to accept the changes.

9.10.3 Change IO Models

The IO models can be changed with a simple mouse click and the bus re-simulated to compare performance. In this exercise, compare performance of the IBIS corner models. Also, changing the Controller and Memory Transmit/ Receive IO models is simple.

- 1. Open the **Analysis Options** by selecting **Setup > Analysis Options**.
- 2. Select the Memory tab.
- 3. Change the Receive IO model for the DataL Bus, to DDR3_DQ34_ODT.

Changing just one of the signals on the bus will update the model for all lines in the DataL bus.


Receive IO Model	
DDR3 DQ34 ODT	-
DDR3_DQ34_NO_ODT	
DDR3_DQ34_ODT	
DDR3_DQ40_NO_ODT	-
DDR3_DQ40_ODT	E
DDR3_DQ48_NO_ODT	
DDR3_DQ48_ODT	
DDR3L_DQ40_NO_ODT	
DDR3L_DQ40_ODT	
DDR3L_DQ48_NO_ODT	
DDR3L_DQ48_ODT	-

4. We now have one data bus using a **low-voltage** driver, and one using a **higher voltage** one.

Controller Memory			 Image: A start of the start of	Memory Blocks Share IO Mode
Bus Group/Signal	Stimulus Pattern	Stim	Transmit IO Model	Receive IO Model
🖓 🗹 DataL	10101010	0		
DQ0	10101010	0	DDR3_DQ34_N	DDR3_DQ34_ODT
DQ1	10101010	0	DDR3_DQ34_N	DDR3_DQ34_ODT
DQ2	10101010	0	DDR3_DQ34_N	DDR3_DQ34_ODT
DQ3	10101010	0	DDR3_DQ34_N	DDR3_DQ34_ODT
☑ DQ4	10101010	0	DDR3_DQ34_N	DDR3_DQ34_ODT
DQ5	10101010	0	DDR3_DQ34_N	DDR3_DQ34_ODT
DQ6	10101010	0	DDR3_DQ34_N	DDR3_DQ34_ODT
DQ7	10101010	0	DDR3_DQ34_N	DDR3_DQ34_ODT
🛛 🗹 LDQS	10	0	DDR3_DQS34	DDR3_DQ534_ODT
🖓 🗹 DataU	10101010	0		
DQ8	10101010	0	DDR3_DQ34_N	DDR3_DQ34_NO_ODT
DQ9	10101010	0	DDR3_DQ34_N	DDR3_DQ34_NO_ODT
✓ DQ10	10101010	0	DDR3_DQ34_N	DDR3_DQ34_NO_ODT
4		-		

The data shows difference in amplitude and ripple for the two cases.

Voltage (V)

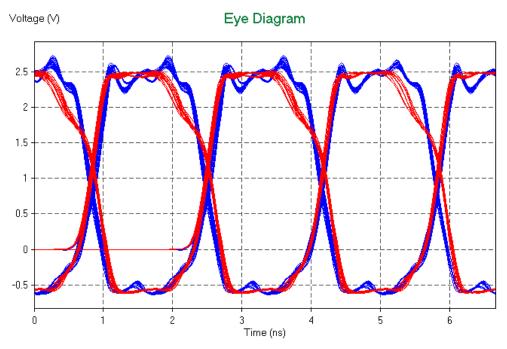
5. Turn the DQ13 signal back on, and switch back to the Max Drive Transmit model.

	MEMC_MDQ13	10101010	0.5T	ddr2 maxdrv io
--	------------	----------	------	----------------

9.10.4 Non-Ideal Power

Turn off **Ideal Power** in the Analysis Options. This will effectively "turn on" the 1.8V VCC connections on the PCB that were generated in the PowerSI extraction (Chapter 6), as well as the VRM and their references that are impacted in the Controller and Memory.

	If we had defined the devices with HSPICE models, or IBIS models that
NOTE!	included the composite pre-driver current (BIRD95), these would also be included in this Non-Ideal Power simulation.
noil.	included in this Non-Ideal Power simulation.


1. To open the Analysis Options, select

Setup > Analysis Options...

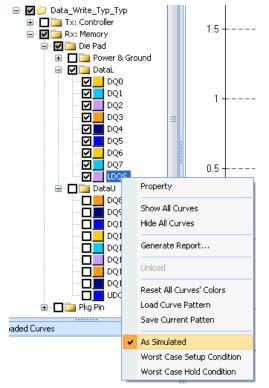
2. Turn off **Ideal Power**.

Simulation Configuration Bus Type: Data Corner Fast Typ Slow	ON Direction Write Read
Active Rank: # o	f Ranks: 1
Rank1	Memory1
	Auto Assign

3. Re-simulate and compare results. To simplify the comparison, we plot ONLY the DQ3 signal, with Ideal Power (Red) and Non-ideal Power (Blue) in an Eye Diagram.

We see a big difference, especially in the sharpness of the rising edge in the two waveforms.

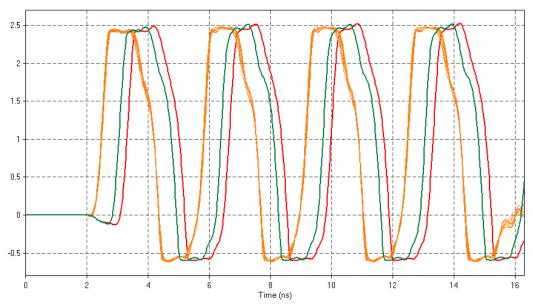
More simulations are possible. Please consult with your Sigrity representative for information about SystemSI - Parallel Bus Analysis.


9.10.5 Worst Case Timing

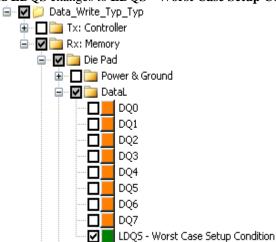
9.10.5.1 Memory Bus in Write Mode

If you set **Stimulus Offset** mode as **Default** in **Analysis Options**, and define worst case timing parameters in **Timing Budget**, Parallel Bus Analysis can simulate both default mode and worst case condition automatically.

1. Enable **LDQS** in **Rx** side and right-click it.


The pop-up menu lists the Worst Case options.

For a Memory bus group in Write mode, three options are available:


- As Simulated –Shows DQS waveform with Stimulus Offset per the Analysis Options form.
- Worst Case Setup Condition Shows DQS waveform with Stimulus Offset calculated from the Min Transmit Setup parameter in the Timing Budget form.
- Worst Case Hold Condition Shows DQS waveform with Stimulus Offset calculated from the Min Transmit Hold parameter in the Timing Budget form.
- 2. Enable Worst Case Setup Condition.

The DQS has shifted as the following figure shows. $_{\text{Voltage}}\left(\text{V}\right)$

- **Orange curve** Data [0:7]
- Red curve LDQS as Simulated
- Green curve Worst Case Setup Condition

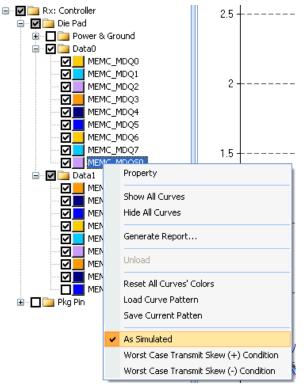
And LDQS changes to LDQS - Worst Case Setup Condition.

9.10.5.2 Memory Bus in Read Mode

For a Memory bus in **Read** mode, Parallel Bus Analysis can simulate both Default mode and Worst Case Condition automatically too. But it is a little different from **Write** mode.

1. Check **Read** as the simulation type in **Analysis Options**.

Simulation Type	
🗌 Write	
🗹 Read	


2. In the **Memory** tab pane, right-click the Stimulus Offset value (0.5T) of **DataL** and select **None**.

ata Rate: 0.6 Gbps Controller Memory	Clock Period: T =	3.33333 ns		1.66667 ns # of Bits: 8 Memory Blocks Share IO Mod	e
Bus Group/Signal	Stimulus Pattern	Stimulus Off	set (ns)	Transmit IO Model	-
🖓 🗹 DataL	10101010	0.5T	None		
DQ0	10101010	0.51			
DQ1	10101010	0.5T	Aligne	d	
DQ2	10101010	0.5T	Worst	Case Transmit Skew (+)	
DQ3	10101010	0.5T	Worst	Case Transmit Skew (-)	
DQ4	10101010	0.5T	0.5T Default		
DQ5	10101010	0.5T Ideal			L
DQ6	10101010	0.5T	Ideal	001000_001_011	
DQ7	10101010	0.5T		DQ_FULL_ODT_OFF	
	10	0.75T		DQ_FULL_ODT_OFF	
DataU	10101010	0.5T			
DQ8	10101010	0.5T		DQ_FULL_ODT_OFF	
	10101010	0.51		DO FUIL ODT OFF	1

NOTE!	Stimulus Offset must be set to None for SystemSI to automatically analyze
NOIL:	worst case timing for the Read case.

3. After simulation, enable **MEMC_MDQS0** and right-click it.

The pop-up menu lists the Worst Case options.

For a Memory bus group in **Read** mode, three options are available:

- As Simulated Shows DQS waveform with Stimulus Offset per the Analysis Options form.
- Worst Case Transmit Skew(+) Condition Shows DQS waveform with Stimulus Offset calculated from the Transmit Skew (+) parameter in the Timing Budget form.
- Worst Case Transmit Skew(-) Condition Shows DQS waveform with Stimulus Offset calculated from the Transmit Skew (-) parameter in the Timing Budget form.

9.10.6 Terminate Unconnected Nodes

If there are some unused nodes in the block, System SI will automatically terminate the unused nodes.

By default, the termination value for Signal node is 500hm, for Power node is 1e+0080hm and for Ground node is 00hm.

To change the termination value, follow these steps:

1. Select

Setup > Terminate Unconnected Nodes....

	Setup Tools		Window	Help			
4	Analysis Options						
	Terminate Unconnected Nodes						
	Verify Timing Specs before Simulation						
	 Pause before Simulation 						
ir	Hide Previous Curves						
k	Sweep Mode						
		Pre	obe Point				

The Termination Impedance Definition window pops up.

Termination Impedance De	efinition	×
Unconnected Signal Node:	50	Ohm
Unconnected Power Node:	1e+008	Ohm
Unconnected Ground Node:	0	Ohm
Defa	ult OK	Cancel

NOTE: SystemSI will add termination for unused nodes in the blocks except Controller and Memory blocks.

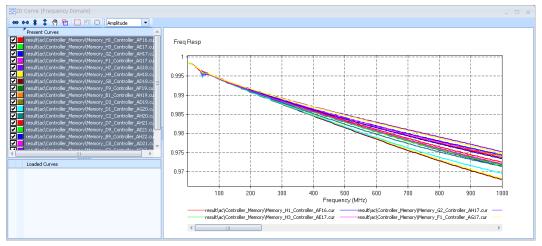
9.10.7 Frequency Response

SystemSI - Parallel Bus Analysis provides calculation for frequency response.

1. Select

Tools > Frequency Response....

	Tools	s Window Help							
¥K		Simulation							
		Timing Budget							
		Frequency Response							
_		S Parameter Extraction							
3		S Parameter Viewer							
		Sweep Manager							
		Model Builder							
_		Result Browser							
		Report Generator							
	_	Options >							


The Frequency Response window opens.

Controller Signal	Controller Pin	Memory Signal	Memory Pin	Frequency Response	Average Magnitude
		Memory::DQ0	Memory::H1	····	
		Memory::DQ1	Memory::H3	[~~~]	
		Memory::DQ2	Memory::G2	[~~~]	
		Memory::DQ3	Memory::F1	· · · · · ·	
		Memory::DQ4	Memory::H7	· · · · · ·	
		Memory::DQ5	Memory::H9	· · · · · ·	
		Memory::DQ6	Memory::G8	· · · · · ·	
		Memory::DQ7	Memory::F9	· · · · · ·	
		Memory::DQ8	Memory::B1	· · · · · ·	
		Memory::DQ9	Memory::D3		
		Memory::DQ10	Memory::D1	<u>~~~</u>	
		Memory::DQ11	Memory::C2		
		Memory::DQ12	Memory::D7	<u></u>	
		Memory::DQ13	Memory::D9		
		Memory::DQ14	Memory::B9		
		Memory::DQ15	Memory::C8		
		Memory::LDQ5	Memory::F7		
		Memory::UDQ5	Memory::B7	[^^^ ···]	

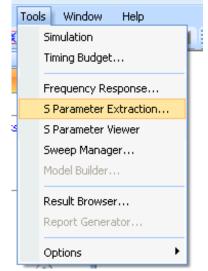
User can define **Maximum Frequency** and **No. of Frequency Points** by entering numbers in the fields next to them. By default:

- Maximum Frequency is 1Ghz.
- No. of Frequency Points is 128.
- 2. Click the **Calculate** button.

When simulation is completed, a result window opens with Frequency Response curves for all signal nets.

The Frequency Response window lists detailed information for the controllers. In the

To show **Frequency Response** curve for desired net, just click the corresponding button.


Controller Signal	Controller Pin	Memory Signal	Memory Pin	Frequency Response	Average Magnitude
Controller::MEMC_M	Controller::AF16	Memory::DQ0	Memory::H1	···· ··· ···	0.983982
Controller::MEMC_M	Controller::AE17	Memory::DQ1	Memory::H3	····	0.983683
Controller::MEMC_M	Controller::AH17	Memory::DQ2	Memory::G2	····	0.984757
Controller::MEMC_M	Controller::AG17	Memory::DQ3	Memory::F1	····	0.984668
Controller::MEMC_M	Controller::AG18	Memory::DQ4	Memory::H7	····	0.983432
Controller::MEMC_M	Controller::AH18	Memory::DQ5	Memory::H9	····	0.982145
Controller::MEMC_M	Controller::AD18	Memory::DQ6	Memory::G8	····	0.981894
Controller::MEMC_M	Controller::AF19	Memory::DQ7	Memory::F9	····	0.983708
Controller::MEMC_M	Controller::AH19	Memory::DQ8	Memory::B1	····	0.984457
Controller::MEMC_M	Controller::AD19	Memory::DQ9	Memory::D3	····	0.983645
Controller::MEMC_M	Controller::AG20	Memory::DQ10	Memory::D1	····	0.982368
Controller::MEMC_M	Controller::AH20	Memory::DQ11	Memory::C2	····	0.983127
Controller::MEMC_M	Controller::AH21	Memory::DQ12	Memory::D7	····	0.984391
Controller::MEMC_M	Controller::AE21	Memory::DQ13	Memory::D9	····	0.983542
Controller::MEMC_M	Controller::AH22	Memory::DQ14	Memory::B9	····	0.984385
Controller::MEMC_M	Controller::AD21	Memory::DQ15	Memory::C8	····	0.983735
Controller::MEMC_M	Controller::AF17	Memory::LDQ5	Memory::F7	····	0.985423
Controller::MEMC_M	Controller::AG21	Memory::UDQ5	Memory::B7	····	0.985259

9.10.8 S-Parameter Extraction

SystemSI - Parallel Bus Analysis supports **S-Parameter Extraction** for both single-ended nets and differential nets.

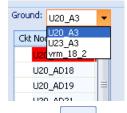
Select

Tools > S Parameter Extraction....

The S Parameter Extraction window opens.

omponent	Circuit	Ground: ngnd	•		# of Frequency Points:	1000 AFS
ackPlane	channel	Ckt Node	Net		 	
nn1	conn1		-		Parameter File Name:	S_para
nn2	conn2	posin	pos		Parameter File Format:	bnp 👻
rd2	daughter2	negin	neg			
pkg	txpkg	posout	pos			
pkg	rxpkg	negout	neg			
ırd1	daughter1			>>		
		1				
			•		Extract	
tt a component, an	d then select positive node and node list. Click '>>' to add a	d 🕀 Left mouse click				

9.10.8.1 Single-ended Mode


1. Click the **Single-ended Mode** tab.

omponent	Circuit	Ground: U20_A3	-	# of Frequency Points:	200 AFS
PCB	tutorial_PCB1_112	Ckt Node		Parameter File Name:	5_para
/RM1	vrm1	U20_AC8		Parameter File Format:	
		U20_AD18		Parameter nie Format:	touchstone 🔻
		U20_AD19	=		
		U20_AD21			
		U20_AE17			
		U20_AE21			
		U20_AF16			
		U20_AF17			
		U20_AF19			
		U20_AG17	_		
•		1120_0618		Extract	

2. Select the **PCB** component to extract S Parameter.

Differential Mode	Single-ended Mode
Component	Circuit
РСВ	tutorial_PCB1
VRM1	vrm1

- 3. Set up ports.
 - 3.1 Click **U20_AF16** to define positive node.
 - 3.2 Choose U20_A3 as Ground node.

3.3 Click the *>>* button.

Settings for **Port_1** are completed as the following window shows.

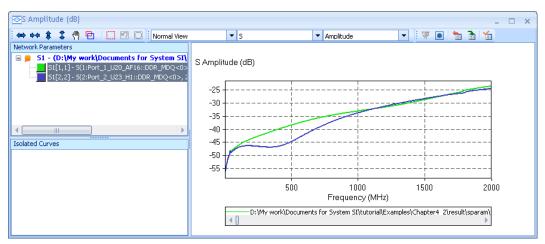
S Parameter Extraction Differential Mode Single-e	ended Mode			
Component	Circuit	Ground: U20_A3	-	Port_1
РСВ	tutorial_PCB1_112	Ckt Node	_	⊕ PCB.U20_AF16 ⊖ PCB.U20_A3
VRM1	vrm1	U20_AC8		- rcb.bzb_H3
		U20_AD18		
		U20_AD19	=	
		U20_AD21		
		U20_AE17		
		U20_AE21	>>	
		🕀 U20_AF16		
		U20_AF17		
		U20_AF19		
		U20_AG17	_	
<			× .	
Select a component, and ther node list. Click '>>' to add a p				

3.4 Choose U23_A3 as Ground node.

Ground:	U23_A3	•	
Ckt Noo	U20_A3 U23_A3		
U23	<u>vrm_18_2</u>	_	
U23	3_F1		
1122	7		

- 3.5 Click **U23_H1** to define positive node.
- 3.6 Click the *>>* button.

Settings for **Port_2** are completed as the following window shows.


Ground: U23_A3	-		Port_1 C DCR U20 A516
Ckt Node	-		⊕ PCB.U20_AF16 ⊖ PCB.U20_A3
U23_D9			Port_2
U23_F1			PCB.U23_H1
U23_F7			⊖ PCB.U23_A3
U23_F9			
U23_G2			
U23_G8		>>	
🕀 U23_H1			
U23_H3	Ξ		
U23_H7			
U23_H9			

- 4. Set up Parameters.
 - 4.1 Define **Frequency Range**.

	Frequency Range:	0 ~	2e9 H	łz
4.2	Define No. of Frequence	ey Points.		
	No. of Frequency Points:	200	🗹 AFS	
4.3	Input Parameter File N	ame. For exa	ample: S_p	ara.
	Parameter File Name:	S_para		
4.4	Select Parameter File I	F ormat : bnp.		
	Parameter File Format:	bnp	-	
		touchstone		
		bnp		

5. Click the **Extract** button.

S Parameter curve for signal net **DQ0** shows as the following figure.

S Parameter document is automatically generated in the folder of <working folder path>\result\sparam\.

9.10.8.2 Differential Mode

1. Click the **Differential Mode** tab.

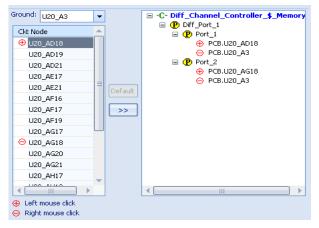
Component	Circuit	Ground: U20_A3	•	-C- Diff_Channel_Controller_	No. of Frequency Points	200 AFS
°CB	tutorial_PCB1_	Ckt Node	-		Parameter File Name:	S_para
		U20_AD18			Parameter File Format:	bnp 🔻
		U20_AD19				bip -
		U20_AD21				
		U20_AE17				
		U20_AE21	Default			
		U20_AF16				
		U20_AF17	>>			
		U20_AF19				
		U20_AG17				
		U20_AG18				
		U20_AG20				
		U20_AG21				
				< III >	Extract	

2. Select the **PCB** component to extract S Parameter.

Component	Circuit
РСВ	tutorial_PCB1_1121

3. Set up ports.

3.1 Choose U20_A3 as Ground node.


Ground:	U20_A3	•
Ckt No	U20_A3 U23_A3	

- 3.2 Click the circuit node U20_AD18 to define positive node.
- 3.3 Right-click the circuit node U20_AG18 to define negative node.

Ground: U20_A3	-		-C- Diff_Channel_Controller_\$_Memory
Ckt Node			
🕀 U20_AD18			
U20_AD19			
U20_AD21			
U20_AE17			
U20_AE21	Ξ	Default	
U20_AF16			
U20_AF17		>>	
U20_AF19			
U20_AG17	-		
⊖ U20_AG18			
U20_AG20			
U20_AG21			
U20_AH17			
			< III >>
🕀 Left mouse click			
😑 Right mouse click			

3.4 Click the *>>* button.

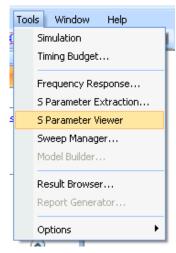
The port **Diff_Port_1** is generated automatically.

NOTE!If differential TimingRef signals exist in Controller and Memory blocks, the
Default button is enabled. You can click the Default button to add ports for
differential TimingRef signals automatically.NOTE!Default button is gray if no differential TimingRef signals exist, like in
this case.

- 4. Set up parameters.
 - 4.1 Define Frequency Range.

	Frequency Range:	0	~	2e9	Hz
4.2	Define No. Of Frequen	cy Points	•		
	No. of Frequency Points:	200		AFS	
4.3	Input Parameter File N	ame.			
	Parameter File Name:	S_para			

4.4 Select Parameter File Format.

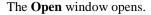

Parameter File Format:	bnp	•
	touchstone	
	bnp	

5. Click the **Extract** button. (In this example, there are no differential signal nets, so click **Cancel** to exit.)

9.10.9 S-Parameter View

1. Select

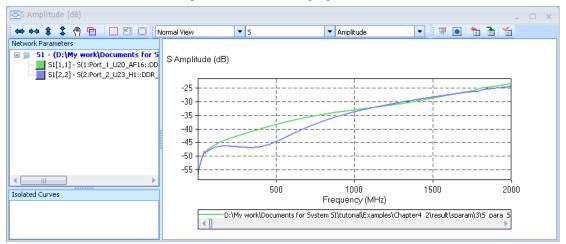
Tools > S Parameter Viewer.



The Port Curves window opens.

Port Curves					_ 🗆 X
!⇔ ++ \$ \$ @ ₽ □ ඞ ¤ !▶	lormal View	▼ 5	 Amplitude 	- 17 💽 🖕 🚡	
Network Parameters					
Isolated Curves					

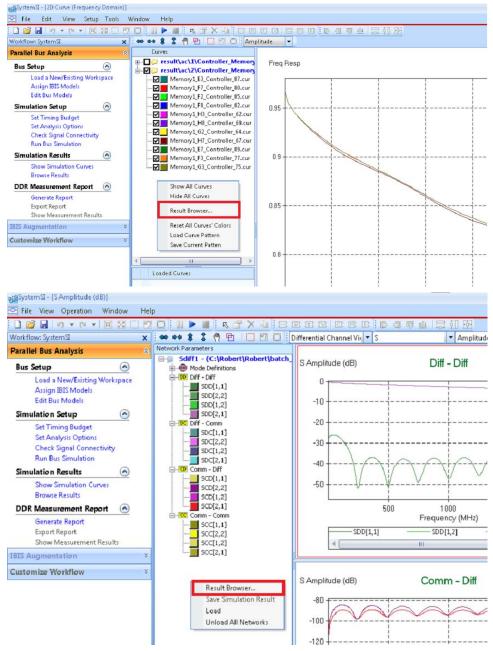
- 2. Right-click the **Network Parameters** pane.
- 3. Select **Load** in the pop-up menu list.


Port Curves					- 🗆 ×
!⇔++\$\$ ¶ @ □ Ø © !N	iormal View 💌	s 🔹	Amplitude 🗸) 🗑 💽 🖿 🖌	
Network Parameters					
Result Browser Save Simulation Result Load Unload All Networks					

Open		?	×
Look in:	a 🔁 3 💽 🛃 🔽 -		
My Recent Documents	Spara_S.bnp SParamExtraction.sp		
Desktop			
My Documents			
My Computer			
	File name: S_para_S.bnp	<u>O</u> pen	5
My Network	Files of type: All Curve Files (*.bnp, *.bds, *.ts, *.SnP)	Cancel].

- 4. Select an S Parameter, e.g. **S_para_S.bnp**.
- 5. Click Open.

The curve shows in the result pane like the following figure.



9.10.10 Result Browser and 2D Curve Presentation

9.10.10.1 Result Browser

The **Result Browser** option is available for all the curve windows, such as 2D Curve (Time Variation), 2D Curve (Frequency Response), and S Parameter Viewer.

You can right-click in the curve panel, and choose **Result Browser...** from the pop-up menu to view the results. As shown in the following figure.

With this option, all the previous results under the **result**, **history** and **result(bat)** folders can be browsed and displayed from various curve windows.

Results Browser		
Folder	Simulation Name	Simulation Type
😑 🗖 🌗 result		
🖶 🗖 🌗 1		
😑 🔲 퉬 history		
🖃 🗖 퉲 3		
Data_Write_Typ_Typ_Rank1	1\Data_Write_Typ_Typ_Rank1	Data Bus Simulation, Write
🕀 🛄 🍌 4		
🗉 🔜 🍌 result(bat)		
🕀 🛄 퉲 sim		
🕀 🛄 🌽 sim 1		
🗉 🛄 🔐 sweep		
🕀 🔜 🍌 sweep 1		
Double click on an item to show the result; or select multiple it	tems to display and click 'Show Results'.	
· · · · · · · · · · · · · · · · · · ·		Show Results Close

9.10.10.2 Curve Pane Context Menu

Right-click on the Curve window.

A context menu appears.

Measure	
Marker	
Expression Calo	ulator
Save	
Export To Excel	
Export Bitmap I	File
Black Backgrou	ind
Embed-Ctrl Vis	ibility 🔸
Embed-Ctrl Po	sition 🕨 🕨
Ctrl Bar Positio	n 🕨
BarChart	
Auto Tip	
Add Annotatio	n

You can perform the following operations in this menu.

- Measure Toggle the horizontal and vertical measure lines.
- Marker Toggle the horizontal and vertical marker lines.
- **Expression Calculator**—Setup and calculation the expression.
- **Save**—Save the curve.
- **Export To Excel**—Export the curve to Excel.
- **Export to Bitmap File**—Export the curve to Bitmap file.
- **Black / White Background** Set the background of the curve window to be black or white.
- **Embed-Ctrl Visibility** Set the visibility of the sub windows (for example, the legend bar) in the display area.
- Embed-Ctrl Position Toggle the sub windows between floating and docking.
- Ctrl Bar Position If a sub window is docked, change the position of the docking.
- **Bar Chart** Toggle the plot style between a bar chart and a continuous line.
- Auto Tip Show / Hide the tip of the objects in the Curve window when moving the mouse.

• Add Annotation — Add a text string in the Curve window.

All these common items are available for 2D Curve (Time variation), 2D Curve (Frequency Response), and 2D Curve (DDR Measurement). However, there is an exception. **Expression Calculator...** is not available for 2D Curve (DDR Measurement). Each 2D Curve may have additional items which are unique to the specific 2D Curve window.

9.10.11 General Options

While performing Parallel bus analysis in SystemSI, you can specify some settings in the Options dialog box.

a) Choose *Tools – Options – Edit Options*.

The **Options** window opens.

Options	x
Simulation General Result	Change the 'General' options in Parallel Bus
Measurement Report	Automation
	Address of notification mail sent when simulation is complete:
	Multiple CPU usage
	Maximum number of CPU to use in the simulation: 1
	Messages and Windows
	Show Warning Messages

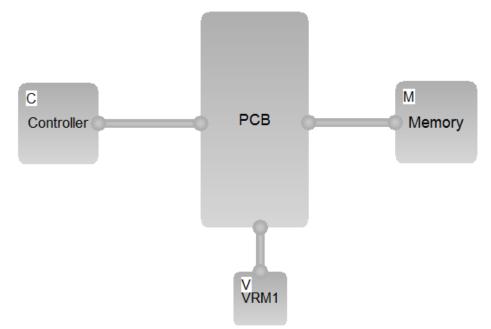
The **General** page contains three sections:

- Automation user can put email address into the blank dialog box, and then user can get notification email when simulation is complete
- Multiple CPU usage user can set the maximum number of CPU to use in the simulation
- Messages and Windows Provides users with the option to show or hide the warning messages generated during simulations. By default, all warning messages are displayed. To hide the warning messages, clear the Show Warning Messages check box.
- b) To specify the display setting of previous simulation results, select Result in the left pane of the Options dialog box.

Simulation General Result Measurement Report	Change the 'Result' options in Parallel Bus
Generate Report	Perform the following operation when openning an existing workspace file O Move the the previous simulation results under the "result" folder to the "history" folder Keep the the previous simulation results under the "result" folder Delete the the previous simulation results under the "result" folder

c) Select the appropriate option. To save the modifications and close the dialog box, click **OK**.

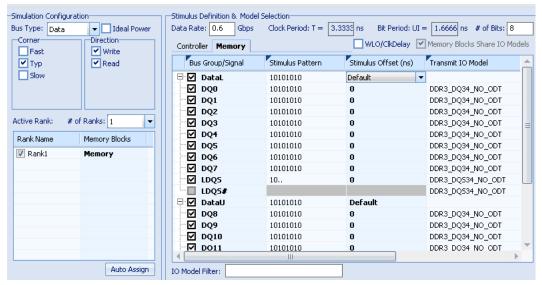
10 DDR Measurement Report

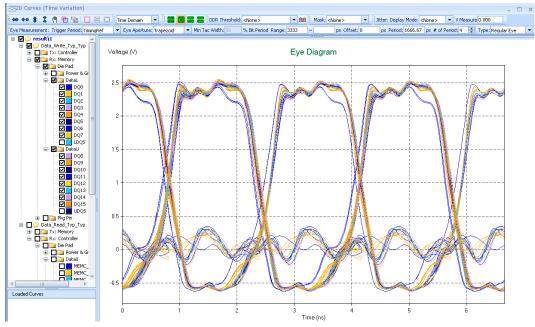

10.1 Introduction

Parallel Bus Analysis has extensive DDR data processing and specification compliance functionality. Standard measurements and specifications from JEDEC standards are included, with user-friendly data presentation and parsing, for unprecedented troubleshooting, all combined with the implicit accuracy that comes with Sigrity unique simulation technology.

This chapter explores the DDR measurement reporting using the completed Tutorial examples.

10.2 Tutorial Files


The block diagram for this chapter consists of a Controller, Memory, PCB, and VRM component, as created in Chapter 9. This design is complete and fully functional with models for each component and a valid connection between each. The design looks like this:


10.3 Simulation Results

Simulate the completed example from *Chapter 9*. Make sure the following details in the Analysis Options are set.

- 1. Turn off **Ideal Power**.
- 2. Make sure the directions **Write** and **Read** are checked.
- 3. Click the **Memory** tab.
- 4. Ensure that data buses, **DataL** and **DataU**, are selected and the **Stimulus Offset** (ns) is set to the **Default** value of **0**.
- 5. Set the **Data Rate** is **0.6** Gbps.

Then, simulate, and plot the Eye Diagram. It should look like this:

Be sure to set the Offset to approximately 3333 ps, to eliminate the leading "0s".

10.4 DDR Report Settings

Generate a DDR Measurement Report from the Workflow selection.

Workflow: SystemSI	×
Parallel Bus Analysis	*
Bus Setup	
Load a New/Existing Workspace Assign IBIS Models Edit Bus Models	
Simulation Setup	
View Timing Budget Set Simulation Controller Run Bus Simulation	
Simulation Results	
Show Simulation Curves Browse Results	
DDR Measurement Report 📀	
Generate Report Export Report Show Measurement Results	

The Generate Report dialog box displays.

AC and DC	ocation: Die Pad Logic Input Levels- DDR3(AC175/DC10	•		ent Range: 0	5		shold (mV): 100	
-	Ended Signals (¥)							
Case #	Corner	VIH(ac) min	VIL(ac) max	VIH(dc) min	VIL(dc) max	VREF(dc)	Ideal Power	A
1	Тур	0.925	0.575	0.85	0.65	0.75	On	
2	Тур	0.85	0.5	0.775	0.575	0.675	Off	
3	Slow	0.8875	0.5375	0.8125	0.6125	0.7125	On	=
4	Slow	0.81	0.46	0.735	0.535	0.635	Off	
5	Тур	0.925	0.575	0.85	0.65	0.75	On	
			0.5	0.775	0.575	0.675	Off	
6	Тур	0.85					-	_
7	Slow	0.8875	0.5375	0.8125	0.6125	0.7125	On	
7 8 1easurem	Slow Slow	0.8875 0.81	0.5375 0.46	0.8125 0.735	0.6125 0.535	0.635	On Off	
7 8 Neasurem Wavef Sye Trigge Setup Dera Hold Derat	slow Slow Slow form Quality ♥ Ey er Period: TimingRef ating Table: Data_D	0.8875 0.81 e Quality v Eye ifferentialDQS_	O.5375 O.46 ✓ Timing Acti75_Setup.c DC100_Hold.cs	0.8125 0.735 DQ Masi pezoid	0.6125 0.535	0.635	off	Specs 7
7 8 Measurem Wavef Wavef Sye Trigge Setup Derat Hold Derat Derating T	slow slow slow form Quality V Ey er Period: TimingRef ating Table: Data_D ting Table: Data_D	0.8875 0.81 e Quality v Eye ifferentialDQ5_ ifferentialDQ5_ learest 1	O.5375 O.46 ✓ Timing Acti75_Setup.c DC100_Hold.cs	0.8125 0.735 DQ Masi pezoid	0.6125 0.535	0.635 elay	off	Open
7 8 Measurem Wavef Wavef Sye Trigge Setup Derat Hold Derat Derating T	slow slow slow form Quality ♥ Ey er Period: TimingRef ating Table: Data_D ting Table: Data_D (able Extrapolation: [N	0.8875 0.81 e Quality fferentialDQ5_ ifferentialDQ5_ learest 1 or 113	O.5375 O.46 ✓ Timing Acti75_Setup.c DC100_Hold.cs	0.8125 0.735 DQ Masi pezoid	0.6125 0.535	0.635 elay	off	Open
7 8 Neasurem Wavef Sye Trigge Setup Dera Hold Derat Derating T	Slow Slow Slow orm Quality ♥ Ey er Period: TimingRef ating Table: Data_D ting Table: Data_D ader TimingDesigne DDR3 Measurement	0.8875 0.81 e Quality fferentialDQ5_ ifferentialDQ5_ learest 1 or 113	O.5375 O.46 ✓ Timing Acti75_Setup.c DC100_Hold.cs	0.8125 0.735 DQ Masi pezoid	0.6125 0.535	0.635 elay	off	Open
7 8 Measurem Wavef Wavef ietup Dera told Derat Derating T	Slow Slow Slow orm Quality ♥ Ey er Period: TimingRef ating Table: Data_D ting Table: Data_D isble Extrapolation: ader TimingDesigne DDR3 Measurement	0.8875 0.81 e Quality fferentialDQ5_ ifferentialDQ5_ learest 1 or 113	O.5375 O.46 ✓ Timing AC175_Setup.c DC100_Hold.cs	0.8125 0.735 DQ Masi pezoid	0.6125 0.535	0.635 elay	off	Open

The various parts of this dialog box are discussed below:

- 1. **Waveform Location**: Specifies whether the output waveform uses Die Pad or PKG Pin data.
- 2. **Measurement Range**. User can choose anyone of the three units: nano seconds (**ns**), pecoseconds (**ps**) and **Cycle**.

3. **Threshold** : This drop-down list lists JEDEC specific AC and DC threshold levels for known DDR4, DDR3, DDR2, DDR1, LPDDR3 and LPDDR2 standards are included.

	If you are running Channel simulation for Data Bus Write operation, only DDR4 threshold values can be selected.
--	---

4. Selecting one of the pre-defined threshold values updates the Voltage values in the dialog, including the **AC** and **DC** threshold values, as well as the Single-ended **Typical** corner values for Low and High logic levels, as displayed in the Single-Ended Signals tab.

Single-Ended Signals (V) Differential Signals (V)							
ase #	Corner	VIH(ac) min	VIL(ac) max	VIH(dc) min	VIL(dc) max	VREF(dc)	Ideal Power
1	Typ (Write)	0.925	0.575	0.85	0.65	0.75	On
2	Typ (Write)	0.85	0.5	0.775	0.575	0.675	Off
3	Typ (Read)	0.925	0.575	0.85	0.65	0.75	On
	Typ (Read)	0.85	0.5	0.775	0.575	0.675	Off

You can modify the DC reference Voltage value, VREF(dc).

> To edit the default value, double-click on the $VREF_{(dc)}$ value and enter the new value.

Single-I	Ended Signals (¥)	Differential Signals (V)				
Case #	Corner	VIH(ac) min	VIL(ac) max	VIH(dc) min	VIL(dc) max	VREF(dc)
1	Тур	0.925	0.575	0.85	0.65	0.75

> To restore the default value, right-click and select Default.

Single-I	Ended Signals (V)	Differential Sig	gnals (V)				
Case #	Corner	VIH(ac) min	VIL(ac) max	VIH(dc) min	VIL(dc) max	VREF(dc)	
1	Тур	0.775	0.425	0.7	0.5	0.6	Default

Adding User-Defined Threshold Values

If required, you can also add a custom threshold value. To create a user-defined threshold:

- a) From the Threshold drop-down list, select <User Defined...>
- b) In the DDR Threshold dialog box, click Add.
- c) Specify the Threshold Name, and AC and DC Threshold values.
- d) If required, you can also specify the values for Differential AC & DC Thresholds.
- e) Click OK.

The Threshold Name is visible in the drop-down list.

- 5. The Differential Tab displays the differential corner values for Typical Low and High logic levels.
- 6. The Measurement types currently include **Waveform Quality**, **Eye Quality**, **Timing**, **DQ Mask**, and **Delay**.

When the DQ Mask option is enabled; Eye Quality And Timing Reports are not generated.

	The DQ Mask option is enabled only for the DDR4 measurement on the Data Write simulation only.				
	For DQ Mask option to be enabled, following conditions must be met:				
	• Selected Threshold is <i>DDR4(AC100/DC75)</i>				
	• Simulation Results have Data Write simulations				
NOTE!	 at least one simulation has the Stimulus Offset set to the Default or Ideal 				
	Unless all these conditions are satisfied, the DQ Mask option is unchecked and grayed out.				
	Eye Quality and Timing options are not available for channel analysis for Data Bus Write simulations.				

- 7. To set the measurement specifications, click **Specs**.
 - > In the Value column, you can set the values for different parameters.
 - To restore the default values, or to use the Timing Specifications from the *Timing Budget* set for this simulation, select the **Default** and **Pull Timing Budget** buttons, respectively.
 - The value specified in the Strobe Adjustment Resolution text box, is used for postprocessing of Data Bus simulation results.
- 8. User can specify Eye Trigger Period. User can choose TimingRef or Same As UI.
- 9. User can use Eye Aperture and Min Tac Width for ApertureWidth measurement.

Two options are available for **Eye Aperture**:

- Trapezoid Selected by default
- Tac/Tdc Rectangles If selected, eye mask consists of two rectangular shapes:
 - Tac: Height of 2*VIH(ac)(from VIL(ac) to VIH(ac)), with a width of Tac.
 - **Tdc**: The second rectangle is from (VIL(dc) to VIH(dc)) and with width of Tdc.

The overall eye aperture width measurement = Tac + Tdc.

Min Tac Width can be useful when Tac/Tdc Rectangles is selected for Eye Aperture. It is a positive number ranging from 0 to 100. The default is 50.

NOTE	If the ringback occurs after the Tac time point which is higher than ViHDC, it doesn't impact the eye-width measurement hence it is not a failure.
NOTE!	If the ringback occurs within the Tac time point which can impact receiver's switching, the first rectangle can be excluded from the eye-width measurement.

- 10. Derating tables for both **Setup** and **Hold** can be specified, with many standard ones that are available from public-domain sources included.
- 11. User can choose Derating Table Extrapolation from None and Nearest.
- 12. HTML Header

This tab allows you to specify the title and Sub-title of the report. The entries in the Notes text box are appended to the report header.

13. Timing Designer

Select this tab, if you want to Launch Timing Designer on the Timing measurements and configuration files generated by SystemSI.

By default, the Setup and Hold measurements are exported to Timing Designer. However, in case of Data Read bus, you can either export the Setup and Hold measurements or export ReadSkew.

	This tab is visible only if the interface to the TimingDesigner is enabled for the project. To enable the interface:
	a) From the <i>Tools</i> menu, choose <i>Options – Edit Options</i> .
	b) In the Options dialog box, select <i>Generate Report</i> .
NOTE!	c) In the Generate Report page, select the <i>Interface to TimingDesigner</i> checkbox .
	d) Click OK.
	If you now launch the Generate Report dialog box, the TimingDesigner tab is displayed.

10.5 Setup and Hold Derating Tables

Standard derating tables from JEDEC are included with the tool.

These are delivered in CSV text format, and custom tables can be created by the user. Select a Derating Table by clicking the browse button in the Measurement Types window.

Measurement Types Waveform Quality Eye Quality	✓ Timing	✓ Delay
Eye Trigger Period: TimingRef 🛛 🖵 Eye Aperture	: Trapezoid 🗸	Min Tac Width (% of UI): 50
Setup Derating Table:		Open
Hold Derating Table:		Open
Derating Table Extrapolation: Nearest	•	

The default location for the derating tables is in the Allegro Sigrity installation directory, typically:

<INSTALL_DIR>\SpeedXP\Library\template\SystemSI\ParallelBus\DeratingTable

Select Derating Table File		X								
🔾 🗸 🖉 🗸 templat	te → SystemSI → ParallelBus → DeratingTable	✓ ✓ Search DeratingTable								
Organize 🔻 New fol	Organize ▼ New folder 🚯 ▼ 🗍 🔞									
 ★ Favorites ■ Desktop ▶ Downloads ™ Recent Places ☆ My Site ■ Libraries ▶ Documents ♪ Music ■ Pictures ■ Videos 	 AddCmd_DifferentialCK_AC125_Setup.csv AddCmd_DifferentialCK_AC135_Setup.csv AddCmd_DifferentialCK_AC150_Setup.csv AddCmd_DifferentialCK_AC175_Setup.csv AddCmd_DifferentialCK_AC200_Setup.csv AddCmd_DifferentialCK_AC250_Setup.csv AddCmd_DifferentialCK_AC250_Setup.csv AddCmd_DifferentialCK_DC100_Hold.csv AddCmd_DifferentialCK_DC125_Hold.csv Data_DifferentialDQS_AC135_Setup.csv Data_DifferentialDQS_AC150_Setup.csv Data_DifferentialDQS_AC175_Setup.csv Data_DifferentialDQS_AC200_Setup.csv Data_DifferentialDQS_AC200_Setup.csv Data_DifferentialDQS_AC200_Setup.csv Data_DifferentialDQS_AC200_Setup.csv Data_DifferentialDQS_AC200_Setup.csv Data_DifferentialDQS_AC200_Setup.csv 	 Data_SingleEndedDQS_AC250_Setup.csv Data_SingleEndedDQS_DC125_Hold.csv LPDDR2_AddCmd_DifferentialCK_AC200_Setup.csv LPDDR2_AddCmd_DifferentialCK_DC130_Hold.csv LPDDR2_AddCmd_DifferentialCK_DC200_Hold.csv LPDDR2_AddCmd_DifferentialCQS_AC220_Setup.csv LPDDR2_Data_DifferentialDQS_AC200_Setup.csv LPDDR2_Data_DifferentialDQS_AC300_Setup.csv LPDDR2_Data_DifferentialDQS_DC130_Hold.csv LPDDR2_Data_DifferentialDQS_DC201_Hold.csv LPDDR2_Data_DifferentialDQS_DC200_Hold.csv LPDDR2_Data_DifferentialCK_AC150_Setup.csv LPDDR3_AddCmd_DifferentialCK_DC100_Hold.csv LPDDR3_AddCmd_DifferentialCK_DC100_Hold.csv LPDDR3_AddCmd_DifferentialCK_DC100_Hold.csv LPDDR3_AddCmd_DifferentialCK_DC100_Hold.csv LPDDR3_AddCmd_DifferentialCK_DC100_Hold.csv LPDDR3_Data_DifferentialOS_AC150_Setup.csv 								
Computer Cocal Disk (C:) Cocal Disk (D:)	Data_DifferentialDQS_DC100_Hold.csv GaaData_DifferentialDQS_DC125_Hold.csv	LPDDR3_Data_DifferentialDQS_DC100_Hold.csv								
File	name:	Derating Table File(*.csv) Open Cancel								

The derating table contains setup or hold scaling constants for specified slew rates. These tables are obtained from JEDEC and other public-domain sources, including device manufacturers. A typical Derating table is shown here:

	Delta_tDH (ps) DC100 tDH Derating Values for DDR3-800/1066/1333/1600/1866/2133												
			DQS, DQS# Differential Slew Rate (V/ns)										
		4.0 V/ns 3.0 V/ns 2.0 V/ns 1.8 V/ns 1.6 V/ns 1.4 V/ns 1.2 V/ns 1											
		Delta_tDS	Delta_tDS	Delta_tDS	Delta_tDS	Delta_tDS	Delta_tDS	Delta_tDS	Delta_tDS				
	2.0	50	50	50									
	1.5	34	34	34	42								
	1.0	0	0	0	8	16							
DQ	0.9		-4	-4	4	12	20						
Slew Rate	0.8			-10	-2	6	14	24					
(V/ns)	0.7				-8	0	8	18	34				
	0.6					-10	-2	8	24				
	0.5						-16	-6	10				
	0.4							-26	-10				

10.6 DDR4 Threshold

To support DDR4 interface, the **DDR4**(**AC100/DC75**) threshold is added to the Threshold dropdown list.

AC and DC Logic Input Levels						
Threshold	DDR4(AC100/DC75)	-				
	DDR4(AC100/DC75)	~				
Single-	EDDR3(AC125/DC100)					
Case #	DDR3(AC135/DC100)					
	DDR3(AC150/DC100)					
1	DDR3(AC175/DC100)	=				
	DDR2(AC200/DC125)					

If the **DDR4**(**AC100/DC75**) is selected, the AC and DC Logic Input Level for the Differential signals are determined using following equations.

10.7 LPDDR2 and LPDDR3 Threshold Application

There are two thresholds for LPDDR2, and one for LPDDR3.

AC and DC L	AC and DC Logic Input Levels							
Threshold:	DDR3(AC175/DC100)	•						
Single-Ende	DDR3(AC135/DC100)	*						
Corner	DDR3(AC150/DC100)							
Corner	DDR3(AC175/DC100)							
Typ (Write	DDR2(AC200/DC125)							
Typ (Read	DDR2(AC250/DC125)							
	DDR1(AC310/DC150)	Ξ						
	LPDDR2(AC300/DC200)							
	LPDDR2(AC220/DC130)							
	LPDDR3(AC150/DC100)							
	<user defined=""></user>	-						

If LPDDR2(AC300/DC200), LPDDR2(AC220/DC130) or LPDDR3(AC150/DC100) is selected, the AC and DC logic input levels for the Differential Signals will be determined by:

VIHdiff(ac) min = 2 * (VIH(ac) min - VREF(dc))

VILdiff(ac) max = 2 * (VIL(ac) max - VREF(dc))

VIHdiff(dc) min = 2 * (VIH(dc) min - VREF(dc))

VILdiff(dc) max = 2 * (VIL(dc) min - VREF(dc))

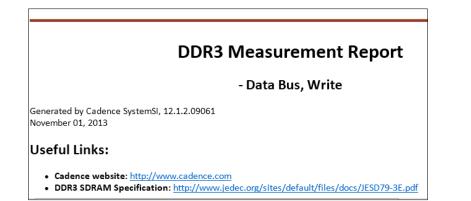
Otherwise, they will be determined by:

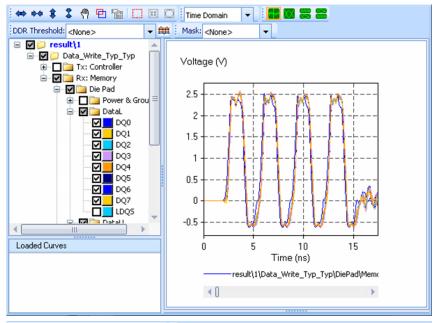
VIHdiff(ac) min = 2 * (VIH(ac) min - VREF(dc)) VILdiff(ac) max = 2 * (VIL(ac) max - VREF(dc)) VIHdiff(dc) min = 0.2

```
VILdiff(dc) max =- 0.2
```

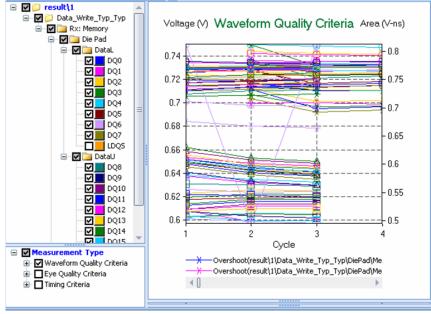
nreshold: LPDD	R2(AC300/DC200	 AC Three 	eshold (mV)	300	DC	Threshold (m	/): 200	
ngle-Ended Sign	nals (V):							
Corner	VIH(ac) min	VIL(ac) max	VIH(dc)	nin VIL(dc)	max	VREF(dc)	VDDQ	
Typ (Write)	1.05	0.45	0.95	0.55		0.75	1.5	
Typ (Read)	1.05	0.45	0.95	0.55		0.75	1.5	
fferential Signal	ls (V):							
Corner	VIHdiff(ac) mi	n VILdiff(ac)	max VI	Hdiff(dc) min	VILd	iff(dc) max		
Typ (Write)	0.6	-0.6	0.	4	-0.4			
Typ (Read)	0.6	-0.6	0.	4	-0.4			

If the TimingRef is differential, the default derating table files will be automatically loaded for


Corner VIH(ac) min VIL(ac) max VIH(dc) min VIL(dc) max VREF(dc) VDQ Typ (Write) 1.05 0.45 0.95 0.55 0.75 1.5 Typ (Read) 1.05 0.45 0.95 0.55 0.75 1.5 ifferential Signals (V): Corner VIHdiff(ac) min VILdiff(ac) max VIHdiff(dc) max VILdiff(dc) max Typ (Write) 0.6 -0.6 0.4 -0.4 - Typ (Read) 0.6 -0.6 0.4 -0.4 -	, and be cogic in	nput Levels								
Typ (Write) 1.05 0.45 0.95 0.55 0.75 1.5 Typ (Read) 1.05 0.45 0.95 0.55 0.75 1.5 ifferential Signals (V): Corner VIHdiff(ac) min VILdiff(ac) max VIHdiff(dc) min VILdiff(dc) max Typ (Write) 0.6 0.6 0.4 -0.4 0.4 -0.4 ViHdiff(ac) min VILdiff(ac) max VIHdiff(ac) max VIHdiff(dc) max Typ (Read) 0.6 0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4	hreshold: LPDDI	R2(AC300/DC200	- AC Thre	eshold	(mV): 30	D	DC	Threshold (mV): 200	
Typ (Write) 1.05 0.45 0.95 0.55 0.75 1.5 ifferential Signals (V): Corner VIHdiff(ac) min VILdiff(dc) max VIHdiff(dc) max VILdiff(dc) max Typ (Write) 0.6 -0.6 0.4 -0.4 Typ (Read) 0.6 -0.6 0.4 -0.4 Vaveform Location: Die Pad ✓ Measurement Range: - Cycle ▼ Measurement Types ✓ Waveform Quality ✓ Eye Quality ✓ Timing ✓ Delay Eye Trigger Period: TimingRef ✓ Eye Aperture: Trapezoid ✓ Min Tac Width (% of UI): 50 Setup Derating Table: [JPDR2_Data_DifferentialDQ5_AC300_Setup.csv Open Hold Derating Table: [JPDR2_Data_DifferentialDQ5_DC200_Hold.csv Open Derating Table Extrapolation: Nearest ✓ Automatically loaded for LPDDR2 and LPDDF	ingle-Ended Sign	als (V):								
Typ (Read) 1.05 0.45 0.95 0.55 0.75 1.5 ifferential Signals (V): Corner VIHdiff(ac) min VILdiff(ac) max VIHdiff(dc) min VILdiff(dc) max Typ (Write) 0.6 0.6 0.4 -0.4 Typ (Read) 0.6 0.6 0.4 -0.4 Typ (Read) 0.6 0.6 0.4 -0.4 Passurement Options Waveform Location: Die Pad ♥ Measurement Range: 0 - Cycle ♥ Measurement Types ♥ Waveform Quality ♥ Eye Quality ♥ Timing ♥ Delay Eye Trigger Period: TimingRef ♥ Eye Aperture: Trapezoid ♥ Min Tac Width (% of UI): 50 Setup Derating Table: LPDDR2_Data_DifferentialDQ5_AC300_Setup.csv	Corner	VIH(ac) min	VIL(ac) max	VIH(dc) min	VIL(dc)	max	VREF(dc)	VDDQ	
ifferential Signals (V): Corner VIHdiff(ac) min VILdiff(ac) max VIHdiff(dc) min VILdiff(dc) max Typ (Write) 0.6 -0.6 0.4 -0.4 Typ (Read) 0.6 -0.6 0.4 -0.4 Typ (Read) 0.6 -0.6 0.4 -0.4 Pasurement Options Vaveform Location: Die Pad ■ Measurement Range: 0 - Cycle ▼ Measurement Types ■ Waveform Quality ■ Eye Quality ■ Timing ■ Delay Eye Trigger Period: TimingRef ▼ Eye Aperture: Trapezoid ♥ Min Tac Width (% of UI): 50 Setup Derating Table: LPDDR2_Data_DifferentialDQ5_AC300_Setup.csv Hold Derating Table: LPDDR2_Data_DifferentialDQ5_DC200_Hold.csv Derating Table Extrapolation: Nearest Automatically loaded for LPDDR2 and LPDDF					-					
Typ (Write) 0.6 -0.6 0.4 -0.4 Typ (Read) 0.6 -0.6 0.4 -0.4 easurement Options -0.6 0.4 -0.4 waveform Location: Die Pad ✓ Measurement Range: 0 - Cycle ▼ Measurement Types ✓ Measurement Trapezoid ✓ Min Tac Width (% of UI): 50 Setup Derating Table: LPDDR2_Data_DifferentialDQS_AC300_Setup.csv … Open Hold Derating Table: LPDDR2_Data_DifferentialDQS_DC200_Hold.csv … Open Derating Table Extrapolation: Nearest Automatically loaded for LPDDR2 and LPDDF	Typ (Read)	1.05	0.45	0.9	5	0.55		0.75	1.5	
Corner VIHdiff(ac) min VILdiff(dc) min VILdiff(dc) max Typ (Write) 0.6 -0.6 0.4 -0.4 Typ (Read) 0.6 -0.6 0.4 -0.4 easurement Options -0.6 0.4 -0.4 waveform Location: Die Pad ▼ Measurement Range: 0 - Cycle ▼ Measurement Types ✓ Waveform Quality ✓ Eye Aperture: Trapezoid ✓ Min Tac Width (% of UI): 50 Setup Derating Table: LPDDR2_Data_DifferentialDQS_AC300_Setup.csv … Open Hold Derating Table: LPDDR2_Data_DifferentialDQS_DC200_Hold.csv … Open Derating Table Extrapolation: Nearest ✓ Automatically loaded for LPDDR2 and LPDDF										
Corner VIHdiff(ac) min VILdiff(dc) min VILdiff(dc) max Typ (Write) 0.6 -0.6 0.4 -0.4 Typ (Read) 0.6 -0.6 0.4 -0.4 easurement Options -0.6 0.4 -0.4 waveform Location: Die Pad ▼ Measurement Range: 0 - Cycle ▼ Measurement Types ✓ Waveform Quality ✓ Eye Aperture: Trapezoid ✓ Min Tac Width (% of UI): 50 Setup Derating Table: LPDDR2_Data_DifferentialDQS_AC300_Setup.csv … Open Hold Derating Table: LPDDR2_Data_DifferentialDQS_DC200_Hold.csv … Open Derating Table Extrapolation: Nearest ✓ Automatically loaded for LPDDR2 and LPDDF		4.4								
Typ (Write) 0.6 -0.6 0.4 -0.4 Typ (Read) 0.6 -0.6 0.4 -0.4 easurement Options /aveform Location: Die Pad ✓ Measurement Range: 0 - Cycle ▼ Measurement Types ✓ Measurement Trapezoid ✓ Min Tac Width (% of UI): 50 Setup Derating Table: LPDDR2_Data_DifferentialDQ5_AC300_Setup.csv Open Hold Derating Table: LPDDR2_Data_DifferentialDQ5_DC200_Hold.csv Open Derating Table Extrapolation: Nearest Automatically loaded for LPDDR2 and LPDDF			1171 -3:5572		11711-1-1:007	4.2		· ((, j _) _ , , , , , ,)		
Typ (Read) 0.6 -0.6 0.4 -0.4 easurement Options				max		ac) min		irr(dc) max		
Aveform Location: Die Pad Measurement Range: 0 - Cycle Measurement Types Measurement Types Measurement Types Museform Quality Eye Quality Eye Aperture: Trapezoid Min Tac Width (% of UI): 50 Setup Derating Table: LPDDR2_Data_DifferentialDQ5_AC300_Setup.csv Hold Derating Table: LPDDR2_Data_DifferentialDQ5_DC200_Hold.csv Derating Table Extrapolation: Nearest Automatically loaded for LPDDR2 and LPDDF										
Vaveform Location: Die Pad ▼ Measurement Range: 0 - Cycle ▼ Measurement Types ✓ Waveform Quality ✓ Eye Quality ✓ Timing ✓ Delay Eye Trigger Period: TimingRef ✓ Eye Aperture: Trapezoid ✓ Min Tac Width (% of UI): 50 Setup Derating Table: LPDDR2_Data_DifferentialDQ5_AC300_Setup.csv … Open Hold Derating Table: LPDDR2_Data_DifferentialDQ5_DC200_Hold.csv … Open Derating Table Extrapolation: Nearest ✓ Automatically loaded for LPDDR2 and LPDDF	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
Waveform Location: Die Pad ✓ Measurement Range: 0 - Cycle ✓ Measurement Types ✓ Waveform Quality ✓ Eye Quality ✓ Timing ✓ Delay Eye Trigger Period: TimingRef ✓ Eye Aperture: Trapezoid ✓ Min Tac Width (% of UI): 50 Setup Derating Table: LPDDR2_Data_DifferentialDQ5_AC300_Setup.csv … Open Hold Derating Table: LPDDR2_Data_DifferentialDQ5_DC200_Hold.csv … Open Derating Table Extrapolation: Nearest ✓ Automatically loaded for LPDDR2 and LPDDF										
Measurement Types ✓ Waveform Quality ✓ Eye Quality ✓ Timing ✓ Delay Eye Trigger Period: TimingRef ✓ Eye Aperture: Trapezoid ✓ Min Tac Width (% of UI): 50 Setup Derating Table: LPDDR2_Data_DifferentialDQ5_AC300_Setup.csv ✓ Open Open Hold Derating Table: LPDDR2_Data_DifferentialDQ5_DC200_Hold.csv ✓ Open Derating Table Extrapolation: Nearest ✓ Automatically loaded for LPDDR2 and LPDDF										
Measurement Types ✓ Waveform Quality Eye Quality ✓ Iming ✓ Delay Eye Trigger Period: TimingRef ✓ Eye Aperture: Trapezoid ✓ Min Tac Width (% of UI): 50 Setup Derating Table: LPDDR2_Data_DifferentialDQ5_AC300_Setup.csv Hold Derating Table: LPDDR2_Data_DifferentialDQ5_DC200_Hold.csv Derating Table Extrapolation: Nearest Automatically loaded for LPDDR2 and LPDDF										
✓ Waveform Quality ✓ Eye Quality ✓ Timing ✓ Delay Eye Trigger Period: TimingRef ▼ Eye Aperture: Trapezoid ✓ Min Tac Width (% of UI): 50 Setup Derating Table: LPDDR2_Data_DifferentialDQS_AC300_Setup.csv … Open Hold Derating Table: LPDDR2_Data_DifferentialDQS_DC200_Hold.csv … Open Derating Table Extrapolation: Nearest ✓ Automatically loaded for LPDDR2 and LPDDF	easurement Optic	ากร								
Eye Trigger Period: TimingRef Eye Aperture: Trapezoid Min Tac Width (% of UI): 50 Setup Derating Table: LPDDR2_Data_DifferentialDQ5_AC300_Setup.csv Hold Derating Table: LPDDR2_Data_DifferentialDQ5_DC200_Hold.csv Open Derating Table Extrapolation: Nearest Automatically loaded for LPDDR2 and LPDDR				Меа	surement	Range:	0			ycle 🔻
Setup Derating Table: LPDDR2_Data_DifferentialDQ5_AC300_Setup.csv Open Hold Derating Table: LPDDR2_Data_DifferentialDQ5_DC200_Hold.csv Open Derating Table Extrapolation: Nearest Automatically loaded for LPDDR2 and LPDDR	Vaveform Locatic	on: Die Pad	•	Меа	surement	Range:	0			iyde 💌
Setup Derating Table: LPDDR2_Data_DifferentialDQ5_AC300_Setup.csv Open Hold Derating Table: LPDDR2_Data_DifferentialDQ5_DC200_Hold.csv Open Derating Table Extrapolation: Nearest Automatically loaded for LPDDR2 and LPDDR	Vaveform Locatic	on: Die Pad		Меа		-	0			Iycle 🔻
Hold Derating Table: LPDDR2_Data_DifferentialDQ5_DC200_Hold.csv Open Derating Table Extrapolation: Nearest Automatically loaded for LPDDR2 and LPDDR	Vaveform Locatic Measurement Ty Waveform	on: Die Pad ypes Quality VE	ye Quality		V 1	îming	0)elay	
Derating Table Extrapolation: Nearest	Vaveform Locatio Measurement Ty Waveform Eye Trigger Pe	on: Die Pad ypes Quality VE riod: TimingRef	ye Quality	e Apert	ure: Tra	fiming ipezoid)elay	of UI): 50
Automatically loaded for LPDDR2 and LPDDF	Vaveform Locatio Measurement Ty Waveform Eye Trigger Pe Setup Derating	on: Die Pad ypes Quality V E riod: TimingRef g Table: LPDDR2_Da	ye Quality Eye ata_Differenti	e Apert	ure: Tra	fiming Ipezoid ietup.csv)elay	of UI): 50
	Vaveform Locatio Measurement Ty Waveform Eye Trigger Pe Setup Derating	on: Die Pad ypes Quality V E riod: TimingRef g Table: LPDDR2_Da	ye Quality Eye ata_Differenti	e Apert	ure: Tra	fiming Ipezoid ietup.csv)elay	of UI): 50
	Vaveform Locatio Measurement Ty Waveform Eye Trigger Pe Setup Derating Hold Derating	on: Die Pad ypes Quality ♥ E riod: TimingRef g Table: LPDDR2_Da Table: LPDDR2_Da	ye Quality VE Quality Eye ata_Differenti ata_Differenti	e Apert	Ure: Tra _AC300_9 _DC200_F	fiming ipezoid ietup.csv iold.csv		♥ [♥ I	Tac Width (%	of UI): 50


LPDDR2 and LPDDR3 Setup derating and Hold derating.

10.8 Generate the Report


Measurement Types	V Eye Quality	✓ Timing	✔ Delay
Eye Trigger Period: Tin	ningRef 🛛 👻 Eye Aperture	Trapezoid 🗸	Min Tac Width (% of UI): 50
Setup Derating Table:	Data_DifferentialDQS_AC200_Setu	ip.csv	Open
Hold Derating Table:	Data_DifferentialDQS_DC125_Hold	l.csv	Open
Derating Table Extrapol	ation: Nearest	-	

After specifying details of the DDR post-processing, the report is generated by clicking **Generate Report**. The generator returns with the report document itself as well as several data analysis templates for viewing and analyzing the data.

10.9 Report Contents

Each report has a header section. This section displays the Title and Subtitle of the Report as entered by you in the HTML Header tab of Generate Tab. The entries made in the Notes section are also appended in this section.

ML Hea	sder
tle:	DDR3 Measurement Report
ub-Title:	Data Bus, 0.6Gbps, Read and Write
otes:	Timing Reports for PBA Tute a
	DDR3 Measurement Report
	- Data Bus, 0.6Gbps, Read and Write
Timir	ng Reports for PBA Tutorial
	rated by Cadence SystemSI, 13.0.2.12102 mber 18, 2013
Use	eful Links:
	Cadence website: http://www.cadence.com

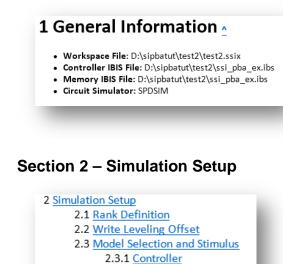
The tool version, and the date on which report was generated, are also listed in this section. Finally, this section includes links to the Cadence website and a link to the DDRx specification.

10.9.1 Table of Contents

The TOC provides a link to various sections in the report. To jump to a particular section of the report, click on the appropriate link in the Table of Contents.

Table of Contents

1 General Info	
2 Simulation S	
	<u>C Definition</u>
	el Selection and Stimulus
	2.1 <u>Controller</u> 2.2 Memory
	al Connectivity
	lation Description
3 DDR Measur	
	nd DC Logic Input Levels
3.2 Spec	
	2.1 Data Bus Write
	2.2 Data Bus Read
	p Derating Table
	Derating Table
4 Results	
	ng Report
	1.1 Data Bus Report
	4.1.1.1 D:\sipbatut\test2\result\1\Data Write Typ Typ 1\DiePa
	4.1.1.1.1 Memory
	4.1.1.2 D:\sipbatut\test2\result\1\Data Write Typ Typ 2\DiePa
	4.1.1.2.1 Memory
	4.1.1.3 D:\sipbatut\test2\result\1\Data Read Typ Typ 3\DiePac
	4.1.1.3.1 Controller
	4.1.1.4 D:\sipbatut\test2\result\1\Data Read Typ Typ 4\DiePac
	4.1.1.4.1 Controller
4.	1.2 Worst Case Summary
5 Appendix	
	C DDR Measurement Definitions
5.2 <u>Desc</u>	cription of Abbreviations


To enable easy navigation, each section of the report has a link to bring you back to the Table of Contents.

4 Result	<u>\$</u>			- 1				
4.1 Eye Quality Report Table Of Contents								
4.1.1 Data Bus	Report 🐴		1					
4.1.1.1 D:\sipbat	ut\test2\result\1\]	Data_Write_Typ_Typ_1	DiePad					
4.1.1.1.1 Memor	\supset		\bigcirc					
		ye Diagram displayed. der to see all its plots.						
Bus Type: Data, Edg	e Type: BothEdges, Bu	s Group: DataL, Timing Ref: LD0	QS-LDQS#, Stimulus Offset: Unk	nown, Meas				
Rx Si	gnal	Min	Min					
Eye Diagram	Pin	tVAC_high/tDVAC_high (ps)	t <u>VAC_low/tDVAC_low (</u> ps)	Viz				
DQ0	E3	1626.4	1570.41	NA				
DQ1	F7	1625.41	1566.67	NA				
DQ2	F2	1631.46	1569.57	NA				

10.9.2 Section 1 – General Information

10.9.3

This section includes information about the design files, including the names and locations of the IBIS models used in the simulation.

2.3.2 <u>Memory</u> 2.4 <u>Signal Connectivity</u> 2.5 Simulation Description

The simulation information is listed, including simulator (HSPICE or SPDSIM), Power (Ideal or Non-ideal) Bus identification, the IBIS model selection and Stimulus for Controller and Memory, the Signal Connectivity, and simulation description.

If the WLO/ClkMeasDelay option was selected in the Analysis Options dialog box, the Write Leveling Offset section is added to the report. This section lists the delay values for each memory component, as calculated in the Write Leveling Offset dialog box.

2.1 Rank	Definition <u>^</u>			
Rank Name	Memory Blocks			
Rank1	U1 U2 U3 U4 U5 U6 U7 U8 U9			
Clock Period: T : Memory	= 1.87617ns, Write Leveling Offset Resolution: 18.7 ClkMeasDelay (ps)	617ps. StrobeMeasDelay (ps)	WLOSkew (ps)	WLO (ps)
U1::Data::DQS/I		1181.56	858.4	863.039
U2::Data::DQS/I	-	1195.47	971.974	975.61
U3::Data::DQS/I	QS# 2288.98	1219.61	1069.37	1069.42
U4::Data::DQS/I	DQS# 2408.89	1244.8	1164.09	1163.23
U5::Data::DOS/I	QS# 2683.81	99.2969	2584.51	2589.12
0 2 1.12 at a 1.12 Q 0 1	QS# 2803.05	99.4877	2703.56	2701.69
	DQS# 2922	99.4913	2822.5	2814.26
U6::Data::DQS/I		102.105	2931.11	2926.83
U6::Data::DQS/I U7::Data::DQS/I U8::Data::DQS/I	DQS# 3033.22	102.105	2751.11	2720105

For each controller and memory block, the report shows the OnDie Parasitics and Package parasitics model used, bus details, Stimulus Offset, and IO model used for each signal.

OnDie Parasities: None; Package Parasities: Pin RLC.							
Bus Group	Signal	Pin	Stimulus Pattern	Stimulus Offset (ns)	Transmit IO Model	Receive IO Model	Status

10.9.4 Section 3 – DDR Measurement Setup

This section lists all the details specified in the Generate Report dialog box (see sections **10.4** and **10.5**). These include the AC and DC logic levels, Specifications for each data bus, and selected Derating Tables for Setup/ Hold measurements.

10.9.5 Section 4 – Results

Results for each of the report data types that were selected by the user are listed in tabular format.

10.9.5.1 Waveform Quality Report

The Waveform Quality report includes Maximum Overshoot and undershoot voltage, Maximum Overshoot and Undershoot Area (voltage-time) and Ringback margin for low and high logic levels, for each simulation for each bus.

.1.1 Data	Bus Report 🖞					
4.1.1.1 D:\si	pbatut\test2\r	esult\1\Data_Write_1	Typ_Typ_1\DiePad ^			
.1.1.1.1 Mem	ory <u>^</u>					
lick on a cr	iteria in a colu	ee its waveform disp mn header to see all Edges, Bus Group: DataL, T	its plots.	imulus Offset: Unknown, N	∕leasurement Range: [0ps, end	i].
R	x Signal	Max	Max	Max	Max	Ī
Waveform	Pin	Overshoot (mV)	OvershootArea (V-ns)	Undershoot (mV)	UndershootArea (V-ns)	
DQ0	E3	478.386	0.316066	498.582	0.34409	78
DQ1	F7	490.98	0.317543	509.596	0.344974	78
DQ2	F2	478.859	0.331887	485.879	0.357466	79
DQ3	F8	474.1	0.31383	486.495	0.341201	77
	H3	513.258	0.334189	531.841	0.358504	11
DQ4	H8	514.021	0.35449	524.578	0.38257	81
		522.416	0.355263	540.657	0.378378	81
<u>DQ5</u>	G2	522.410				0.0
DQ4 DQ5 DQ6 DQ7	G2 H7	459.789	0.314397	478.431	0.337682	81

The worst-case values for each of these measurements for the bus are highlighted in BOLD, and a worst case summary sheet is listed below.

4.1.2 Worst Case Summary

Simulation Results:

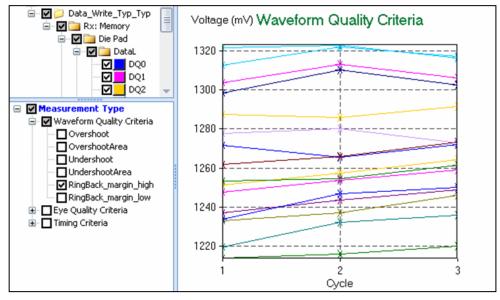
Measurement	Max Overshoot (V)	Max <u>OvershootArea</u> (V-ns)	Max <u>Undershoot (</u> V)	Max <u>UndershootArea</u> (V-ns)	Min <u>RBack marginH</u> (mV)	Min <u>RBack marginL (</u> mV)	Max Power_Ripple (mVp-p)
Worst Value	0.00873821	0.000682472	0.00778104	0.0011464	624.219	621.936	0
Simulation Result	Case 1	Case 1	Case 1	Case 1	Case 1	Case 1	Case 1
Bus Group	DQ	DQ	DQ	DQ	DQ	DQ	DQ
Rx Signal (Waveform)	<u>DQ1</u>	DQ1	<u>DQ0</u>	<u>DQ7</u>	DQ1	<u>DQ7</u>	VDDQ
Cycle	4	4	4	3	3	2	

If the **Explicit Power and Ground Terminals** option is checked in the **Load IBIS** GUI of the Controller/Memory block (please refer to *Section 2.3.2Controller / Memory Block* for details), the Waveform Quality measurement will use the signal's own power and ground for the measurements of the Overshoot, OvershootArea, Undershoot, UndershootArea, and Power_Ripple.

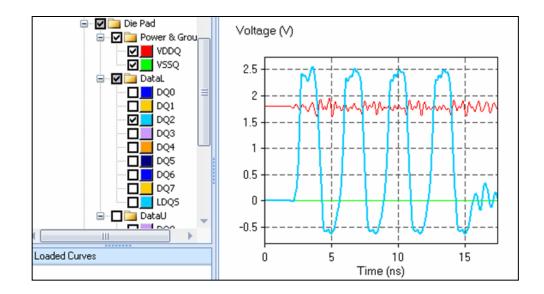
4 Results

4.1 Waveform Quality Report

4.1.1 Data Bus Report


4.1.1.1 D:\Working\Bugs (SI-SHCN-1008)/01117867_SSI PBA SLA\SSI-09\demo\demo\result2\Data_Write_Typ_Typ\DiePad

Click on a signal name to see its waveform displayed.


Click on a criteria in a column header to see all its plots.

Bus Type: Data, Ed	ge Type: BothEdges,	Bus Group: DQ, Timing Ref:	DQS-DQS#, Measurement Ra	nge: [3727.05ps, end]				
Rx Si	gnal	Max	Max	Max	Max	Min	Min	Max
Waveform	Pin	Overshoot (V)	OvershootArea (V-ns)	Undershoot (V)	UndershootArea (V-ns)	RBack_marginH (mV)	RBack_marginL_(mV)	Power_Ripple (mVp-p)
DM TDQS	B7	NMP	NMP	NMP	NMP	NMP	NMP	<u>0</u>
DQ0	B3	0.00840186	0.000448678	0.00779651	0.000873248	633.402	623.109	<u>0</u>
DQ1	C7	0.00877261	0.000713627	0.00109116	1.30255e-005	624.319	626.091	ō
DQ2	C2	0.00807801	0.000403484	0.00723891	0.000325954	633.078	621.9	<u>0</u>
DQ3	C8	0.00793335	0.000403447	NMP	NMP	632.933	NMP	<u>0</u>
DQ4	E3	NMP	NMP	NMP	NMP	NMP	NMP	<u>0</u>

By clicking the column header link, the cycle-to-cycle variation for that value is plotted for the bus. For example, the Ringback margin (high) link opens this 2D Curve Data Window, showing the Ringback margin at each cycle for every signal in the bus.

Similarly, clicking the Signal Name link in the first (left) column of the data table opens a 2D Curve showing the time-domain waveform for that signal, with the low and high logic levels overlaid.

10.9.5.2 Eye Quality Report

The Eye Quality report has tabular data summarizing results, showing worst-case values in BOLD, and a worst case summary sheet is listed below.

4.2 Eye Quality Report

4.2.1 Data Bus Report

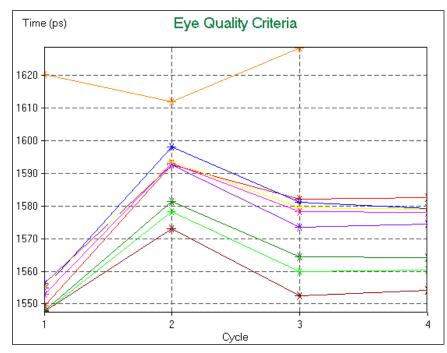
 $4.2.1.1\ C: \signity Samples \signity Samples \signity Samples \signity Samples \signity \s$

4.2.1.1.1 Memory

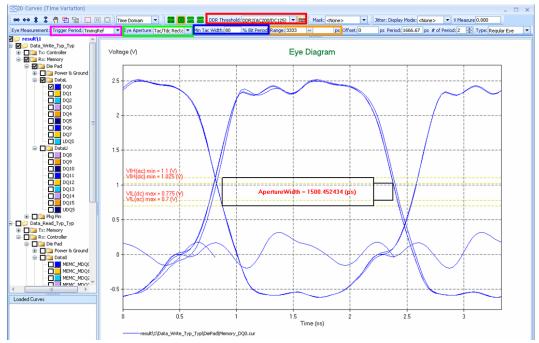
Click on a signal name to see its Eye Diagram displayed. Click on a criteria in a column header to see all its plots.

Rx	Signal	Min	Min	Max	Max	Min
Eye Diagram	Pin	tVAC_high/tDVAC_high (ps)	<pre>tVAC_low/tDVAC_low (ps)</pre>	Vix_rise (mV)	Vix_fall (mV)	ApertureWidth (ps)
DQ0	H1	1558.18	1654.64	NA	NA	1561.3
<u>DQ1</u>	H3	1540.41	1657.04	NA	NA	1551.34
<u>DQ2</u>	G2	1534.38	1658.05	NA	NA	1544.49
DQ3	F1	1534.62	1663.66	NA	NA	1544.61
DQ4	H7	1543.23	1651.62	NA	NA	1553.27
<u>DQ5</u>	H9	1536.41	1662.03	NA	NA	1547.48
DQ6	G8	1568.79	1631.48	NA	NA	1575.51
<u>DQ7</u>	F9	1547.29	1643.99	NA	NA	1558.28
All Signals		NA	NA	NA	NA	1455.41
LDQS	F7	1727.03	1506.7	NA	NA	1513.83

4.2.2 Worst Case Summary


Simulation Results:

Case 1: Didocument update\SSI\SSI_15\case_temp9\result 1\Data_Write_Typ_Typ\DiePad Case 2: Didocument update\SSI\SSI_15\case_temp9\result 1\Data_Read_Typ_Typ\DiePad


Measurement	Min <u>tVAC_high/tDVAC_high</u> (ps)	Min <u>tVAC_low/tDVAC_low</u> (ps)	Max <u>Vix rise (</u> mV)	Max <u>Vix fall</u> (mV)	Mir ApertureW	
Worst Value	1395.04	1613.03			1351.85	1336.16
Simulation Result	Case 2	Case 1			Case 2	Case 2
Bus Group	Data0	DataU			Data1	Data1
Rx Signal (Waveform / Eye Diagram)	MEMC MDQ0	<u>DQ12</u>			MEMC MDQ13	All Signals
Cycle	2	1				

The V_{ix} parameters are Eye quality metrics for DDR3 that assume a Differential clock signal. The measurement is not applicable for DDR2 systems with a single-ended strobe.

As with the Waveform Quality report, clicking the Column Header for each measurement will open a 2D curve showing the Cycle-to-cycle variation of that parameter. This is the tVAC_high/tDVAC_low parameter.

Clicking the Signal name in the first column of the table, opens the Eye diagram for that signal, with the Eye aperture plotted with the data on the plot.

The settings in the marked parts of the above figure are set according to the settings in **Report Generator** as shown below.

ingle-Ended Signa	(AC200/DC125)	AC Three	eshold (mV): 20	00 DC	Threshold (m)	/): 125	
Corner	VIH(ac) min	VIL(ac) max	VIH(dc) min	VIL(dc) max	VREF(dc)	VDDQ	
Typ (Write) Typ (Read)	1.1 1.1	0.7 0.7	1.025 1.025	0.775 0.775	0.9 0.9	1.8 1.8	
easurement Optic Vaveform Locatio Measurement Ty	n: Die Pad /pes	•		t Range: 3333		ps 💌]
Waveform Eye Trigger Per	Quality 🗹	Eye Quality		Timing ac/Tdc Rectangle		Delay Tac Width (% of UI): 8	0
Setup Derating Hold Derating 1	Table: Data_Dil Table: Data_Dil	fferentialDQ5_A		v			Open Open

10.9.5.3 Timing Report

The timing report has a comprehensive tabular listing of JEDEC setup and hold measurements. Raw and slew-rate adjusted (derated) values are listed, with worst-case values highlighted in bold.

4.3 Timing Report

4.3.1 Data Bus Report

$4.3.1.1\ C: \signity Samples \signity Samples \signity Samples \signity Samples \signity Samples \signity \si$

4.3.1.1.1 Memory

Click on a signal name to see its waveform displayed. Click on a criteria in a column header to see all its plots.

Bus Type: Data, Edge Type: BothEdges, Bus Group: DataL, Timing Ref: LDQS, Measurement Range: [3333ps, end] Br Store Min Partine Schere Addeder Min Partine Halts Addeder

Rx	Signal	[Min, Max]	Min	[Min, Max]	Max	Min	Min	Min
Waveform	Pin	<u>SlewRateTimingRef</u> (V/ns)	<u>raw_tD8 (</u> ps)	SlewRateSetup (V/ns)	Delta_tDS (ps)	adj_tDS (ps)	t <u>DS_margin (</u> ps)	<u>raw_tDH (</u> ps)
DQ0	H1	[5.01056, 9.43198]	733.655	[5.21437, 6.85652]	OOR	NMP	316.989	766.909
DQ1	H3	[5.01056, 9.43198]	751.597	[4.83197, 7.80428]	OOR	NMP	334.931	754.59
DQ2	G2	[5.01056, 9.43198]	722.177	[4.91982, 6.70377]	OOR	NMP	305.511	771.214
DQ3	F1	[5.01056, 9.43198]	724.255	[4.99714, 6.98393]	OOR	NMP	307.589	771.037
DQ4	H7	[5.01056, 9.43198]	747.119	[5.07409, 6.65814]	OOR	NMP	330.453	751.541
DQ5	H9	[5.01056, 9.43198]	<u>717.218</u>	[4.8304, 6.76983]	OOR	NMP	<u>300.552</u>	782.413
DQ6	G8	[5.01056, 9.43198]	837.319	[5.21227, 6.46158]	OOR	NMP	420.653	<u>654.741</u>
D <u>Q7</u>	F9	[5.01056, 9.43198]	718.343	[4.7834, 7.142]	OOR	NMP	301.677	783.691
LDQS	F7	NA	NA	NA	NA	NA	NA	NA

$4.3.1.2 \ D: \ document update \ SSI \ SSI \ 15 \ case_temp9 \ result \ \ Data_Read_Typ_Typ \ \ DiePad$

4.3.1.2.1 Controller

Click on a signal name to see its waveform displayed. Click on a criteria in a column header to see all its plots.

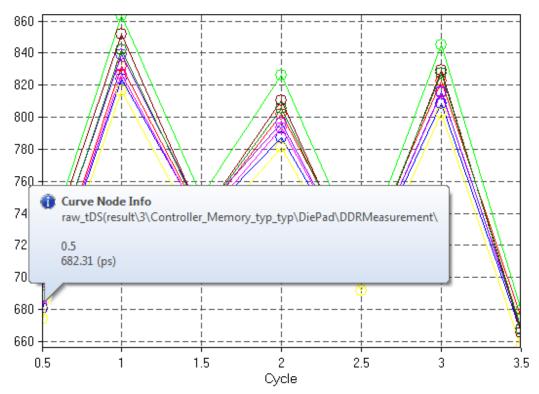
	Bus Type: Data, Edge Type: BothEdges, Bus Group: Data0, Timing Ref: MEMC_MDQ80, Measurement Range: [3333ps, end] Rx Specs: Max Receive Skew (+): 0.416666ns, Max Receive Skew (-): 0.416666ns.											
									Min ReadSkew margin			
Waveform	Pin	(V/ns)	raw_tDS (ps)	(V/ns)	(ps)	adj_tDS (ps)	raw_tDH (ps)	(V/ns)	(ps)	(ps)	(ps)	(ps)
MEMC MDQ0	AF16	[4.97115, 11.7245]	54.1279	[5.318, 5.4601]	OOR	NMP	15.3585	[3.33427, 8.48676]	OOR	NMP	32.4492	384.217
MEMC MDQ1	AE17	[4.97115, 11.7245]	35.3475	[5.87836, 8.72584]	OOR	NMP	0.668045	[5.05105, 9.53359]	OOR	NMP	-16.9096	399.756

4.3.2 Worst Case Summary

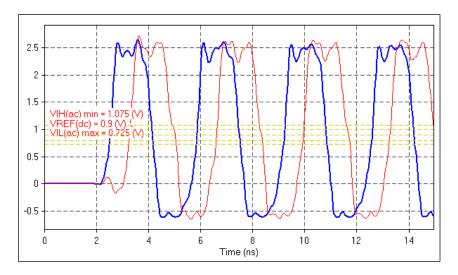
Measurement	[Min, Max] SlewRateTimingRef (V/ns)	Min <u>raw_tDS_(</u> ps)	[Min, Max] SlewRateSetup (V/ns)	Max Delta_tDS (ps)	Min adj_tDS (ps)	Min <u>tDS_margin (</u> ps)	Min <u>raw_tDH</u> (ps)
Worst Value		717.218				300.552	654.741
Bus Group		DataL				DataL	DataL
Rx Signal (Waveform)		<u>DQ5</u>				<u>DQ5</u>	<u>DQ6</u>
Cycle		1.5				1.5	2

Out of Range are typically undefined values (Pink) in the derating tables:

			Delta_tI	OS (ps) AC2	00 tDS Derati	ing Values for	DDR2-667/80	0/1066					
	DQS, DQS# Differential Slew Rate (V/ns)												
		4.0 V/ns	3.0 V/ns	2.0 V/ns	1.8 V/ns	1.6 V/ns	1.4 V/ns	1.2 V/ns	1.0 V/ns	0.8 V/ns			
		Delta_tDS	Delta_tDS	Delta_tDS	Delta_tDS	Delta_tDS	Delta_tDS	Delta_tDS	Delta_tDS	Delta_tDS			
	2.0	100	100	100									
	1.5	67	67	67	7 9								
	1.0	0	0	0	12	24							
DQ	0.9		-5	-5	7	19	31						
Slew Rate	0.8			-13	-1	11	23	35					
(V/ns)	0.7				-10	2	14	26	38				
	0.6					-10	2	14	26	38			
	0.5						-24	-12	0	12			
	0.4							-52	-40	-28			


• If the selection for the **Derating Table Extrapolation** is **Nearest**, a note will be added below the derating table:

Note: Derating Table Extrapolation: Nearest.


• If the selection for the **Derating Table Extrapolation** is **None**, a note will be added below the derating table:

Note: cell contents shaded in red are defined as 'not supported'.

Clicking any of the column headers opens a cycle-to-cycle plot in the 2D Curve window, showing the variation of that parameter for each signal in the bus. This the raw tDS (Setup Time), with the mouse Autotip showing the data for one of the DQ lines at the first cycle. Time periods where a data line does not have a transition will not have data for that cycle. Note that the "raw" prefix indicates that the measurement is taken directly from the raw waveforms that were produced.

Clicking the Signal name in the first column of the table opens the Time domain plot for that signal, with its clock/ strobe signal.

10.9.5.4 Timing Report – Strobe and Clock

This report is available only for Data bus Write simulations. In case of Data bus has a clock signal defined and connected, the timing margin between the clock signal and the data strobe signal is measured and include in this report.

		-	obe und e	lock <u>^</u>			
l.4.1 Data	Bus Re	port <u>^</u>					
.4.1.1 D:\si	ipbatut\d	lqsclk_copy_	copy\dqsclk_coj	py_copy\resu	lt\1\Data_Write_	_Typ_Typ\Di	ePad <u>^</u>
Click on a cr Bus Type: Dat	gnal nan iteria in a, Clock: C	a column hea K-CKB, Measure	waveform displa der to see all it: ment Range: [3411.54 Strobe Hold: 312.5ns	s plots. 4ps, end]	:k Skew(+): 312.5ps, 1	vlax Strobe/Clock	Skew(.): 312 5ps
Rx Sign		Min	Min	Min	Min	Max	Min
Waveform	Pin	tDSS (ps)	tDSS_margin (ps)	tDSH (ps)	tDSH_margin (ps)	t <u>DQSS (</u> ps)	tDQSS_margin (ps
<u>DQSL-</u> DQSLB	F3, G3	827.688	515.188	1665.4	1352.9	<u>429.763</u>	<u>-117.263</u>
<u>DQSU-</u> DQSUB	C7, B7	827.742	515.242	<u>1665.34</u>	1352.84	417.95	-105.45
				NA	NA	NA	NA

10.9.5.5 Timing Report - Worst Case Condition

If worst case Timing Reference waveforms exist, the DDR report will have additional Timing Report tables for those cases. To generate data for these reports, SystemSI simply shifts the Timing Reference waveform according to the parameters set up in the Timing Budget form, and re-measures all the report criteria. This enables the worst case timing margins to be determined from a single comprehensive time domain simulation run, saving significant simulation time. The shift applied to the Timing Reference signal is documented in each Worst Case report table, and the appropriate shifted waveforms will appear when cross probed from these tables.

1. Timing Report - Worst Case Setup Condition

4.4 Timing Report - Worst Case Setup Condition

4.4.1 Data Bus Report

$4.4.1.1 \ C: \signity Samples \signity Samples \signity Samples \signity Samples \signity Samples \signity \s$

4.4.1.1.1 Memory

Click on a signal name to see its waveform displayed. Click on a criteria in a column header to see all its plots.

Bus Type: Data, Edge Type: BothEdges, Bus Group: DataL, Timing Ref: LDQS, Measurement Range: [3333ps, end] De Search Min Paraira Same: 0.416666ne, Min Paraira Hold: 0.416666ns, TimingRef: Was shifted left by 253.378 ps for the Worst Case Setup Condition

RX specs: Min Ro	sceive setup: 0.4.	10000hs, Min Receive Fiold: (0.410000ns. 1 imingRef w	as shifted left by 200.578 p	os for the worst Case Sett	p Condition.		
Rx Si	gnal	[Min, Max]	Min	[Min, Max]	Max	Min	Min	Min
Waveform	Pin	SlewRateTimingRef (V/ns)	<u>raw_tDS (</u> ps)	SlewRateSetup (V/ns)	Delta_tDS (ps)	adj_tDS (ps)	t <u>DS_margin (</u> ps)	<u>raw_tDH (</u> ps)
<u>DQ0</u>	H1	[4.80582, 9.51268]	477.87	[5.21437, 6.85652]	NMP	NMP	61.2037	1023.73
<u>DQ1</u>	H3	[4.80582, 9.51268]	495.883	[4.83197, 7.80428]	NMP	NMP	79.2166	1011.41
<u>DQ2</u>	G2	[4.80582, 9.51268]	466.392	[4.91982, 6.70377]	NMP	NMP	49.7257	1028.04
DQ3	F1	[4.80582, 9.51268]	468.47	[4.99714, 6.98393]	NMP	NMP	51.8039	1027.86
<u>DQ4</u>	H 7	[4.80582, 9.51268]	491.334	[5.07409, 6.65814]	NMP	NMP	74.6676	1008.36
<u>DQ5</u>	H9	[4.80582, 9.51268]	461.433	[4.8304, 6.76983]	NMP	NMP	44.7668	1039.24
<u>DQ6</u>	G8	[4.80582, 9.51268]	581.534	[5.21227, 6.46158]	NMP	NMP	164.868	<u>911.563</u>
<u>DQ7</u>	F9	[4.80582, 9.51268]	462.557	[4.7834, 7.142]	NMP	NMP	45.8912	1040.51
LDQS	F7	NA	NA	NA	NA	NA	NA	NA
37 . 377 - 3		371 (7) - 37 1 (•	

Note: NA = Not Applicable; NMP = No Measurement Possible; OOR = Out of Range.

4.4.2 Worst Case Summary

Measurement	[Min, Max] SlewRateTimingRef (V/ns)	Min <u>raw_tDS (</u> ps)	[Min, Max] SlewRateSetup (V/ns)	Max Delta_tDS (ps)	Min adj_tD\$ (ps)	Min <u>tDS_margin (</u> ps)	Min <u>raw_tDH (</u> ps)
Worst Value		455.944				39.2775	911.563
Bus Group		DataU				DataU	DataL
Rx Signal (Waveform)		<u>DQ11</u>				<u>DQ11</u>	<u>DQ6</u>
Cycle		1.5				1.5	2

2. Timing Report - Worst Case Hold Condition

4.5 Timing Report - Worst Case Hold Condition

4.5.1 Data Bus Report

4.5.1.1.1 Memory

Click on a signal name to see its waveform displayed. Click on a criteria in a column header to see all its plots.

Rx Sig	nal	[Min, Max]	Min	[Min, Max]	Max	Min	Min	Min	[Min, Max]	Max	Min	Min
Waveform	Pin	SlewRateTimingRef (V/ns)	raw_tDS_(ps)	SlewRateSetup (V/ns)	Delta tDS (ps)	<u>adj_tDS (ps)</u>	t <u>DS_margin</u> (ps)	raw_tDH (ps)	SlewRateHold (V/ns)	Delta_tDH (ps)	<u>adj_tDH</u> (ps)	t <u>DH_margir</u> (ps)
DQ0	H1	[4.62188, 6.91083]	1041.02	[6.29443, 6.99742]	NMP	NMP	624.355	483.588	[5.44916, 6.451]	NMP	NMP	66.9221
DQ1	H3	[4.62188, 6.91083]	1066.9	[6.42991, 7.42108]	NMP	NMP	650.235	452.286	[4.86771, 7.051]	NMP	NMP	35.6201
DQ2	G2	[4.62188, 6.91083]	1041.99	[5.66115, 6.83466]	NMP	NMP	625.328	483.556	[4.61503, 6.52821]	NMP	NMP	66.8897
DQ3	F1	[4.62188, 6.91083]	1043.14	[5.92535, 6.85653]	NMP	NMP	626.475	481.283	[4.74608, 6.53304]	NMP	NMP	64.6174
DQ4	H7	[4.62188, 6.91083]	1060.3	[5.52516, 7.05846]	NMP	NMP	643.637	467.551	[4.42351, 6.65107]	NMP	NMP	50.8851
DQ5	H9	[4.62188, 6.91083]	1030.22	[5.74919, 6.76733]	NMP	NMP	613.55	495.567	[4.9757, 6.46169]	NMP	NMP	78.901
DQ6	G8	[4.62188, 6.91083]	1064.18	[6.15695, 7.30063]	NMP	NMP	647.515	464.747	[4.7879, 6.99058]	NMP	NMP	48.0806
DQ7	F9	[4.62188, 6.91083]	1047.62	[6.33303, 7.23075]	NMP	NMP	630.952	478.717	[5.55791, 6.83187]	NMP	NMP	62.0506
LDOS	F 7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

4.5.2 Worst Case Summary

Simulation Results:

Case 1: D:\My work\Documents for System SI\tutorial\Examples\Chapter4_2\result\testqq\Data_Write_Typ_Typ\DiePad Case 2: D:\My work\Documents for System SI\tutorial\Examples\Chapter4_2\result\testqq\Data_Read_Typ_Typ\DiePad

Measurement	[Min, Max] SlewRateTimingRef (V/ns)	Min <u>raw_tD\$ (</u> ps)	[Min, Max] SlewRateSetup (V/ns)	Max Delta_tDS (ps)	Min <u>adj_tDS (</u> ps)	Min <u>tDS_margin</u> (ps)	Min raw_tDH(ps)	[Min, Max] SlewRateHold (V/ns)	Max <u>Delta_tDH</u> (ps)	Min <u>adj_tDH</u> (ps)	Min <u>tDH_margin</u> (ps)
Worst Value		1016.62				599.957	446.269				29.6031
Simulation Result		Case 1				Case 1	Case 1				Case 1
Bus Group		DataU				DataU	DataU				DataU
Rx Signal (Waveform)		<u>DQ14</u>				<u>DQ14</u>	<u>DQ10</u>				<u>DQ10</u>
Cycle		2.5				2.5	3				3

3. Timing Report - Worst Case Transmit Skew (+) Condition

4.6 Timing Report - Worst Case Transmit Skew (+) Condition

4.6.1 Data Bus Report

 $4.6.1.2 D: \label{eq:sigma_basis} bill the last the las$

4.6.1.2.1 Controller

Click on a signal name to see its waveform displayed. Click on a criteria in a column header to see all its plots.

		BothEdges, Bus Group (+): 0.416666ns, Max							se Transmit Sk	ew (+) Condi	ition.		
Rx Signal	Rx Signal [Min, Max] Min Max Min Min Min Max Min SlewRateTimingRef rgw tDS SlewRateSetup Delta tDS adj tDS rgw tDL SlewRateHold Delta tDH adj tDH ReadSkew ReadSkew ReadSkew marring												
Waveform	Pin	(V/ns)	(ps)	(V/ns)	(ps)	(ps)	(ps)	(V/ns)	(ps)	(ps)	(ps)	(ps)	
MEMC MDQ0	AF16	[4.99257, 11.6996]	1286.81	[8.61033, 8.95511]	NMP	NMP	121.379	[5.318, 8.48676]	NMP	NMP	<u>195.064</u>	221.602	
MEMC MDOI	AE17	F/ 00257 11 60061	1222.52	[9.13232,	NMP	NMP	122.055	[5.87836,	NMP	NMP	150 171	266.405	

4. Timing Report - Worst Case Transmit Skew (-) Condition

4.7 Timing Report - Worst Case Transmit Skew (-) Condition

4.7.1 Data Bus Report

 $4.7.1.2 \ D: \ document \ update \ SSI \ SSI \ 15 \ ext{ase_temp} result \ \ Data \ \ Read \ \ Typ \ \ Die \ Pad$

4.7.1.2.1 Controller

Click on a signal name to see its waveform displayed. Click on a criteria in a column header to see all its plots.

		BothEdges, Bus Group (+): 0.416666ns, Max							ase Transmit Sl	kew (-) Cond	ition.	
Rx Signal		[Min, Max]	Min	[Min, Max]	Max	Min	Min	[Min, Max]	Max	Min	Max	Min
Waveform	Pin	SlewRateTimingRef (V/ns)	raw_tDS (ps)	SlewRateSetup (V/ns)	Delta_tDS (ps)	<u>adj_tDS</u> (ps)	raw_tDH (ps)	SlewRateHold (V/ns)	<u>Delta_tDH</u> (ps)	<u>adj_tDH</u> (ps)	ReadSkew (ps)	ReadSkew_margin (ps)
MEMC MDQ0	AF16	[4.96353, 12.0335]	136.087	[2.95668, 8.95511]	NMP	NMP	1271.79	[5.318, 8.48676]	NMP	NMP	-207.72	208.946
MEMC MDQ1	AE17	[4.96353, 12.0335]	167.315	[4.83306, 9.53359]	NMP	NMP	1273.76	[5.87836, 8.90327]	NMP	NMP	-209.241	207.425
MEMC MDQ2	AH17	[4.96353, 12.0335]	140.206	[4.30116, 8.33027]	NMP	NMP	1296.26	[5.30849, 7.56909]	NMP	NMP	-187.661	229.005

You can click any signals or parameter to open the 2D Curve or Criteria, and the shifted value of Timing reference is shown on the top of the sheet.

		te Type: BothEdges, Bu ve Setup: 0.416666ns, N						e Worst Case I	Hold Condition.		-			
Rx Sign	Rx Signal [Min, Max] Min [Min, Max] Max Min Min Min [Min, Max] Max Min Min <u>SlewRateTimingRef</u> raw tDS SlewRateSetup Delta tDS adj tDS tDS margin raw tDH SlewRateHold Delta tDH adj tDH tDH margin													
Waveform														
<u>DQ0</u>	Hl	[4.65741, 9.62724]	983.122	[5.20652, 6.85652]	NMP	NMP	566.456	510.1	[5.61526, 6.7903]	NMP	NMP	93.4336		
<u>DQ1</u>	H3	[4.65741, 9.62724]	1001.4	[4.83197, 7.80428]	NMP	NMP	584.731	497.175	[5.00619, 6.87401]	NMP	NMP	80.5089		

4.6 Timing Report - Worst Case Transmit Skew (+) Condition

4.6.1 Data Bus Report

$4.6.1.2 \ D: \ document \ update \ SSI \ SSI \ 15 \ case_temp9 \ result \ l \ Data_Read_Typ_Typ \ Die Pad$

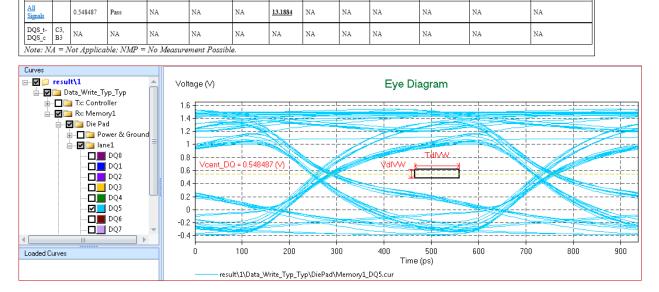
4.6.1.2.1 Controller

Click on a signal name to see its waveform displayed. Click on a criteria in a column header to see all its plots.

		BothEdges, Bus Group (+): 0.416666ns, Max							se Transmit Sk	ew (+) Cond	ition.		
Rx Signal	Rx Signal [Min, Max] Min [Min, Max] Max Min [Min, Max] Max Min Max Max Min [Min, Max] Max Min Min												
Waveform	Pin	(V/ns)	(ps)	(V/ns)	(ps)	(ps)	(ps)	(V/ns)	(ps)	(ps)	(ps)	ReadSkew_margin (ps)	
MEMC MDQ0	AF16	[4.99257, 11.6996]	1286.81	[8.61033, 8.95511]	NMP	NMP	121.379	[5.318, 8.48676]	NMP	NMP	<u>195.064</u>	221.602	
MEMC MIDOL	417	FA 00257 11 60061	1332 52	[9.13232,	NIMP	NIMP	123.055	[5.87836,	NMP	NMP	150 171	266.405	

NOTE!

Right-click **Timing Criteria** in the 2D Curves (DDR Measurement) window, and a pop-up menu lists 5 options available for selection.


🗄 🗖 Overshoot (Irite	ria
🗄 🔲 Eye Quality	Crite	eria
Timing Crite SlewRat	~	As Simulated
raw_tD		Worst Case Setup Condition
SlewRat		Worst Case Hold Condition
✓ Delta_tí ✓ adj tDS		Worst Case Transmit Skew (+) Condition
rest auj_tos rest tos ma		Worst Case Transmit Skew (-) Condition
✓ raw_tDH	l/ra	v_tIH
🛛 🗹 SlewRat		
🖸 🗹 Delta_t	•	_
adj_tDH		-
tDH_mai		'tIH_margin
🛛 🗹 ReadSke		
🔤 🗹 ReadSke	sw_l	nargin 🔽

10.9.5.6 DQ Mask Report

-

DQ Mask report is generated on Data Write simulations for DDR4 measurements only. For the DQ Mask to be generated, at least one simulation must have the Stimulus Offset set to the *Default* or *Ideal*.

4.2.1.1 1	D:\sip	batut\ddr4	_welem_vrn	n_copy\ddr4	_welem_vrm	_copy\resu	lt\1\Data_	Write_Typ	o_Typ\Di	ePad <u>^</u>			
.2.1.1.1	Memor	yl <u>^</u>											
Click on	a sigi	nal name to	o see the DC	ር Mask displ	ayed.								
Rx DQ M Rx Timin	lask Sp g Specs	ecs: VdIVW: 1	36mV, TdIVW:	93.7647ps.					-	[3369.71ps, end], U _Mask: 1V/ns, Max	-	Wns, Min SlewRate_AC	_Swing: 0.2V/ns, Max
Rx Sig	mal	Vent DO	DQ	Min	Min	Max	Max	Min	Min	Min	Max	Min	Max
DQ Mask	Pin	Vcent_DQ (V)	Compliance Mask	Jitter_margin (ps)	Noise_margin (mv)	tDQS2DQ (ps)	tDQ2DQ (ps)	VIHL_AC (mV)	TdIPW (ps)	SlewRate_Mask (V/ns)	SlewRate_Mask (V/ns)	SlewRate_AC_Swing (V/ns)	SlewRate_AC_Swing (V/ns)
DQ0	C2	0.549947	Pass	150.358	235.579	-37.0591	NA	607.159	432.301	3.16195	6.30698	3.07902	6.24484
DQ1	B 7	0.546425	Pass	141.314	216.041	-47.8327	NA	568.082	414.653	2.86127	6.22312	2.81228	6.17491
DQ2	D3	0.545792	Pass	141.967	218.575	-42.6529	NA	573.151	414.438	3.06302	6.15219	2.93573	6.12392
DQ3	D7	0.546247	Pass	142.026	218.487	-42.8909	NA	572.975	414.525	3.04976	6.17029	2.93245	6.14046
DQ4	D2	0.545106	Pass	142.526	215.72	-47.1462	NA	<u>567.439</u>	416.238	2.87598	<u>6.35295</u>	2.82585	<u>6.30357</u>
DQ5	D8	0.545826	Pass	142.35	216.13	-46.2657	NA	568.26	415.757	2.91078	6.31304	2.85283	6.26928
DQ6	E3	0.546563	Pass	142.188	220.885	-42.6592	NA	577.769	415.162	3.0793	6.1275	2.94517	6.10067
DQ7	E7	0.551867	Pass	148.888	241.404	-34.6444	NA	618.808	430.113	3.27011	5.99994	3.1427	5.94223
<u>All</u> Signals		0.548487	Pass	NA	NA	NA	<u>13.1884</u>	NA	NA	NA	NA	NA	NA
Oleman							NA	NA	NA	NA	NA	NA	NA

10.9.5.7 Delay Report

The Delay report includes Rx Signal and Tx Buffer Output information, MeasDealy, BufferDelay, InterconnectDelay, InterconnectSkew, StrobeInterconnectSkew, FirstSwitch, and FinalSettle. The worst-case values are highlighted in Bold, and a worst case summary sheet is listed in the following figure.

The Stimulus offset column is populated for designs that have the WLO/ClkMeasDelay option is selected in the Analysis options dialog box. 4.8 Delay Report

4.8.1 Data Bus Report

 $4.8.1.1\ C: (Cadence \ SPB_16.6 \ ASI \ Base \ Speed \ XP \ Samples \ System \ SI \ Parallel \ Bus \ Analysis \ Tutorial \ result \ 2 \ Data_Write_Typ_Typ \ Die \ Parallel \ Bus \ Analysis \ Tutorial \ result \ 2 \ Data_Write_Typ_Typ \ Die \ Parallel \ Bus \ Analysis \ Tutorial \ result \ 2 \ Data_Write_Typ_Typ \ Die \ Parallel \ Bus \ Analysis \ Tutorial \ result \ 2 \ Data_Write_Typ_Typ \ Die \ Parallel \ Bus \ Analysis \ Tutorial \ Result \ 2 \ Data_Write_Typ_Typ \ Die \ Parallel \ Bus \ Analysis \ Tutorial \ Result \ 2 \ Data_Write_Typ_Typ \ Die \ Parallel \ Bus \ Analysis \ Tutorial \ Result \ Analysis \ Tutorial \ Result \ Analysis \ Tutorial \ Result \ Analysis \ A$

4.8.1.1.1 Memory

Click on a signal name to see its waveform displayed. Click on a criteria in a column header to see all its plots.

Bus Type: Data	, Edge Type	BothEdges, Bus Group: Data	aL, Timing Red	LDQS-LDQ	S#, Stimulus O	effset: Unknown, M	easurement Range:	[3937.88ps, end].					
	P	x			Ta				Max	Maxi	Max	Min	Max
Waveform	Pin	IO Model	Signal	Pin	10 Model	Stimulus Offset (ps)	Buffer Delay (ps)	MeasDelay (ps)	InterconnectDelay (ps)	InterconnectSkew (ps)	StrobelnterconnectSkew (ps)	FirstSwitch (ps)	FinalSettle (ps)
DQ0	E3	DDR3_DQ34_NO_ODT						3424.59	3424.59	-513.288	NA	3392.58	3523.71
D01	F7	DDR3_DQ34_NO_ODT						3423.8	3423.8	-514.073	NA	3393.23	3534.31
DQ2	F2	DDR3_DQ34_N0_ODT						3429.57	3429.57	-508.307	NA	3399.16	3541.27
DQ3	F8	DDR3_DQ34_NO_ODT						3429.58	3429.58	-508.296	NA	3399.03	3541.97
DQ4	H3	DDR3_DQ34_NO_ODT						3423.73	3423.73	-514.144	NA	3393.1	3535.41
DQ5	H8	DDR3_DQ34_N0_ODT						3428.5	3428.5	-509.375	NA	3397.89	3540.8
D06	G2	DDR3_DQ34_N0_ODT						3428.97	3428.97	-508.908	NA	3398.46	3539.88
DQ7	H7	DDR3_DQ34_NO_ODT						3425.01	3425.01	-512.868	NA	3392.69	3523.28
LDOS. LDOS	F3, G3	DDR3_DQ834_NO_ODT						3937.88	3937.88	NA	0	NA	NA

Note: NA = Not Applicable; NMP = No Measurement Possil

If the WLO/ClKDelay option is selected in the Analysis Options dialog box, the Stimulus Offset column includes the WLO values for controller block and and CLKDelay values for memory block.

4.8.1.2 C:|Cadence|SPB_16.6\ASI\Base\SpeedXP\Samples\SystemSI\Parallel Bus Analysis\Tutorial\result2\Data_Read_Typ_Typ\DiePad

4.8.1.2.1 Controller

Click on a signal name to see its waveform displayed. Click on a criteria in a column header to see all its plots.

Bus Type: Data,	Edea Tama	RathEdges	Bus Group	Date0	Timine Raf	MEMO	08001

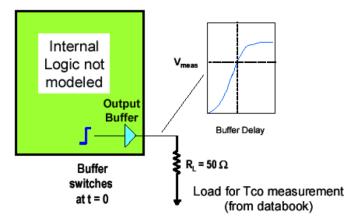
Bos Type: Data, 20	ge rype bot	nEdges, Bos Group.	Dates, 1 mm	g POEL INIEIN	10_1110620							
Rat	Signal		1	Tx Buffer O	stput			Max InterconnectDelay	Max	Max StrobeInterconnectSkew	Min	Max
Waveform	Pin	IO Model	Signal	Pin	IO Model	BufferDelay (ps)	MeasDelay (ps)	(ps)	InterconnectSkew (ps)	(ps)	FirstSwitch (ps)	FinalSettle (ps)
MEMC MDQ0	AF16	ddr2_maxdrv_io	DQ0	Hi	DQ_FULL_ODT_OFF	701.777	1237.61	535.831	2.69804	NA	453.673	553.393
MEMC MDQ1	AE17	ddr2_maxdrv_io	DQ1	H3	DQ_FULL_ODT_OFF	684.69	1210.66	525.97	-7.17245	NA	428.509	544.128
MEMC_MDQ2	AH17	ddr2_maxdrv_io	DQ2	G2	DQ_FULL_ODT_OFF	692.819	1232.99	540.168	7.02463	NA	463.335	558.13
MEMC MDQ3	AG17	ddr2_maxdrv_io	DQ3	F1	DQ_FULL_ODT_OFF	697.512	1237	539.484	6.34067	NA	460.835	557.031
MEMC MDQ4	AG18	ddr2_maxdrv_io	DQ4	H7	DQ_FULL_ODT_OFF	681.429	1205.85	524.422	-8.72068	NA	422.813	544.833
MEMC MDQ5	AH18	ddr2_maxdrv_io	DQ5	H9	DQ_FULL_ODT_OFF	693.738	1227.51	533.774	0.631409	NA	438.37	552.824
MEMC MDQ6	AD18	ddr2_maxdrv_io	DQ6	G8	DQ_FULL_ODT_OFF	686.887	1240.89	553.998	20.8553	NA	442.802	<u>571.261</u>
MEMC MDQ7	AF19	ddr2_maxdrv_io	DQ7	F9	DQ_FULL_ODT_OFF	698.735	1229.67	530.937	-2.20625	NA	439.515	548.121
MEMC MDQ80	AF17	ddr2_maxdrv_io	LDQS	F7	DQ_FULL_ODT_OFF	681.787	1214.93	533.143	NA	0	NA	NA
Mata: MA = Mat	Annlingh	$a_1 M M P = M a_1$	1 Conservation	Date il	hla				-			

Note: NA = Not Applicable; NMP = No Measurement Possible.

Rx	Signal		1	Tx Buffer O	stput			Max	Max	Max	Min	Max
Waveform	Pin	IO Model	Signal	Pin	IO Model	BufferDelay (ps)	MeasDelay (ps)	InterconnectDelay (ps)	InterconnectSkew (ps)	StrobeInterconnectSkew (ps)	FirstSwitch (ps)	FinalSettle (ps)
MEMC MDQ8	AH19	dár2_maxárv_io	DQS	Bl	DQ_FULL_ODT_OFF	701.701	1226.84	525.143	-1.27371	NA	446.184	544.815
MEMC MDQ9	AD19	ddr2_maxdrv_io	DQ9	D3	DQ_FULL_ODT_OFF	686.113	1207.87	521.76	-4.65747	NA	427.664	541.102
MEMC MDQ10	AG20	ddr2_maxdrv_io	DQ10	DI	DQ_FULL_ODT_OFF	704.399	1241.69	537.294	10.8769	NA	465.33	556.493
MEMC MDQ11	AH20	ddr2_maxdrv_io	DQ11	C2	DQ_FULL_ODT_OFF	693.815	1231.57	537.754	11.3369	NA	464.623	558.289
MEMC MDQ12	AH21	ddr2_maxdrv_io	DQ12	D 7	DQ_FULL_ODT_OFF	683.257	1227,47	544.217	17.8001	NA	465.262	564.23
MEMC MDQ13	AE21	dár2_maxárv_io	DQ13	D9	DQ_FULL_ODT_OFF	701.105	1230.07	528.961	2.54342	NA	451.395	548.53
MEMC MDQ14	AH22	ddr2_maxdrv_io	DQ14	B9	DQ_FULL_ODT_OFF	699.175	1242.28	543.104	16.687	NA	473.809	562.533
MEMC MDQ15	AD21	dár2_maxárv_io	DQ15	CS	DQ_FULL_ODT_OFF	692.211	1217.22	525.005	-1.41248	NA	437.715	545.687
MEMC MDQ\$1	AG21	ddr2_maxdrv_io	UDQS	B7	DQ_FULL_ODT_OFF	684.293	1210.71	526.417	NA	6.7258	NA	NA

4.8.2 Worst Case Summary

Simulation Results:


Case 1: C:(Cadence\SPB_16.6\AS\/Base\SpeedXP\Samples\SystemS\/Parallel Bus Analysis\Tutorial\result\2\Data_Write_Typ_Typ\DiePad Case 2: C:\Cadence\SPB_16.6\AS\/Base\SpeedXP\Samples\SystemS\/Parallel Bus Analysis\Tutorial\result\2\Data_Read_Typ_Typ\DiePad

Measurement	BufferDelay (ps)	MeasDelay (ps)	Max InterconnectDelay (ps)	Max InterconnectSkew (ps)	Max StrobeInterconnectSkew (ps)	Min <u>FirstSwitch</u> (ps)	Max <u>FinalSettle</u> (ps)
Worst Value			553.998	84.6564	19.483	134.276	571.261
Simulation Result			Case 2	Case 1	Case 1	Case 1	Case 2
Receiver			Controller	Memory	Memory	Memory	Controller
Bus Group			Data0	DataL	DataL	DataL	Data0
Rx Signal (Waveform)			MEMC_MD06	205	LDOS	D04	MEMC_MDQ6
Cycle							0.5

The delay measurements are defined as below:

• BufferDelay

The output buffer model used for signal integrity analysis is connected to the Tco test load and simulated. The delay is measured at the point where the output pin crosses Vmeas. The corresponding delay is then saved and used in flight time computations.

MeasDelay

Measure delay(MeasDelay) is measured from time 0 in the simulation to when the receiver waveform crosses the Vmeas threshold.

• InterconnectDelay

InterconnectDelay is measured on each cycle, as:

MeasDelay - BufferDelay

This produces a min and max value.

InterconnectSkew

InterconnectSkew is measured on each cycle, as:

InterconnectDelay_Signal - InterconnectDelay_TimingRef

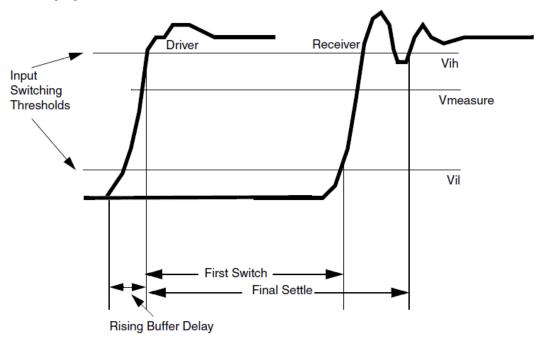
The max one of these gets reported in the Delay Report as Max InterconnectSkew.

• StrobeInterconnectSkew

StrobeInterconnectSkew is measured on each cycle, as:

InterconnectDelay_Strobe - InterconnectDelay_Clock

The max one of these gets reported in the Delay Report as Max StrobeInterconnectSkew.

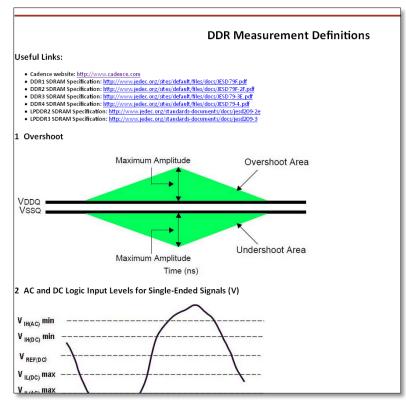

• FirstSwitch

This is determined by subtracting the associated buffer delay from a simulation measurement. For example, on a rising (falling) edge, the simulation measurement is from time zero to when the receiver first crosses its Vil (Vih) DC logic threshold. The associated rising (falling) buffer delay of the driving IOCell is subtracted from this measurement value to produce the reported first switch delay.

• FinalSettle

This is determined by subtracting the associated buffer delay from a simulation measurement. For example, on a rising (falling) edge, the simulation measurement is from time zero to when the receiver crosses its Vih (Vil) AC logic threshold the final time and settles into the high (low) logic state. The associated rising (falling) buffer delay of the driving IOCell is subtracted from this measurement value to produce the reported final settle delay.

The following diagram illustrates buffer delay, first switch delay, and final settle delay for a rising signal.


This section provides links to the DDR Measurement Definitions and Abbreviations.

5 Appendix 🛉

5.1 JEDEC DDR Measurement Definitions

5.2 Description of Abbreviations

Selecting the JEDEC DDR Measurement Definitions link opens another HTML files that explains each of the measurements included in the generated report.

Select the Description of Abbreviation link, displays a table containing the Abbreviation and its meaning.

Description of Abbreviations

ApertureWidth	Aperture Width of Eye Diagram
BufferDelay	Buffer Delay of the Tx IO Model
ClockInterconnectSkew	Skew between Strobe and Clock
DDR	Double Data Rate
ddr sdram	Double Data Rate Synchronous Dynamic Random-Access Memory
DM	Write Data Mask Signal
DQ	Data Signal
DQS	Data Strobe Signal
FinalSettle	Final Settle Delay
FirstSwitch	First Switch Delay
IBIS	Input/Output Buffer Information Specification
InterconnectDelay	MeasDelay - BufferDelay
InterconnectSkew	Interconnect Skew between the Signal and TimingRef
JEDEC	Joint Electron Devices Engineering Council
MeasDelay	Measured Delay at Rx crossing of Vmeas (per IBIS)
NA	Not Applicable
NMP	No Measurement Possible
OOR	Out of Range
Overshoot	Max Excursion of Signal over Power Rail

11 SystemSI with Other Tools

This chapter covers following topics.

- SystemSI Integration with Allegro Signal Explorer (SigXplorer)
- SystemSI Integration with Timing Designer
- <u>Auto Archive SSI Project</u>

11.1 SystemSI Integration with Allegro Signal Explorer (SigXplorer)

SystemSI provides a way to push a topology for a particular signal into SigXplorer for constraint capture. SigXplorer topologies are then used to drive electrical constraints, including the routing schedule, into Allegro layout. The topology database becomes an Electrical Constraint Set (ECSet) within the Allegro database that can be applied to one or many nets.

To export the results of Parallel bus analysis as Electrical constraints, perform the following steps.

1. From the File menu, choose **Export Constraint Topology**.

Following message box is displayed.

SystemSI		×	
	SigXplorer topologies map to target nets in the layout design on a pin by pin basis. Certain components, like terminators for example, may be represented in sub-circuits within blocks in SystemSI. These components will need to be manually added to the extracted topology in SigXplorer.		
	ОК		

2. Select **OK**, to close the message box.

The Export Constraint Topology dialog box appears.

port Constraint Topology	×
Bus topology requires an AC sweep to determine the signal connectiv	ity.
Do you want to continue?	
# of Frequency Points: 16	
Yes No	

Before extracting the topology information, System SI runs a connectivity check of the Controller – Memory topology. The connectivity is determined by running the AC Sweep analysis (involves S parameter extracting of the interconnects) and analyzing the strength of each connection. For a design or a topology, this is a one-time validation task. The analysis results are used for all subsequent exports.

3. To continue, click **Yes**.

AC sweep analysis starts to determine the signal connectivity.

- SP	aramExt	raction.sp				×
<u>F</u> ile	<u>V</u> iew	<u>A</u> nalysis	<u>O</u> ptions	<u>H</u> elp		cādence
		Solving frequ	uency 1.0000	100e+009	Frequency sweeping	

Once the AC Sweep analysis is completed, the connectivity data is displayed in the Signal Connectivity dialog box as shown in the following figure.

Controller Signal	Controller Pin	Memory Signal	Memory Pin	A 1
Controller::A0	Controller::23	Mem1::A0	Mem1::N3	_
Controller::A1	Controller::20	Mem1::A1	Mem1::P7	=
Controller::A2	Controller::17	Mem1::A2	Mem1::P3	
Controller::A3	Controller::21	Mem1::A3	Mem1::N2	
Controller::A4	Controller::22	Mem1::A4	Mem1::P8	
Controller::A5	Controller::19	Mem1::A5	Mem1::P2	
Controller::A6	Controller::18	Mem1::A6	Mem1::R8	
Controller::A7	Controller::15	Mem1::A7	Mem1::R2	
Controller::CLK0P	Controller::52	Mem1::CK	Mem1::J7	
Controller::CLKON	Controller::51	Mem1::CK#	Mem1::K7	-

4. From the signal drop-down list, select the signal for which topology is to be exported as constraint.

Controller Signal	Controller Pin	Memory Signal	Memory Pin	
Controller::A0	Controller::23	Mem1::A0	Mem1::N3	
Controller::A1	Controller::20	Mem1::A1	Mem1::P7	=
Controller::A2	Controller::17	Mem1::A2	Mem1::P3	
Controller::A3	Controller::21	Mem1::A3	Mem1::N2	
Controller::A4	Controller::22	Mem1::A4	Mem1::P8	
Controller::A5	Controller::19	Mem1::A5	Mem1::P2	
Controller::A6	Controller::18	Mem1::A6	Mem1::R8	
Controller::A7	Controller::15	Mem1::A7	Mem1::R2	
Controller::CLK0P	Controller::52	Mem1::CK	Mem1::J7	
Controller::CLKON	Controller::51	Mem1::CK#	Mem1::K7	-
Constraint A0 A1 A2	: mycons_		Expo	rt Cance
A3 A4 A5 A6			01 (101	

All blocks connected to that signal are displayed in the Signal Connectivity dialog box. The Constraint Topology Name field is also populated by default, *<design name_signalname>*. If required, you can specify a different name for the constraint topology.

Controller Signal	Controller Pin	Memory Signal	Memory Pin	
Controller::A7	Controller::15	Mem1::A7	Mem1::R2	
Controller::A7	Controller::15	Mem2::A7	Mem2::R2	
Controller::A7	Controller::15	Mem3::A7	Mem3::R2	
Controller::A7	Controller::15	Mem4::A7	Mem4::R2	
Signal: A7	1			

5. Click Export.

Splash screen for Allegro SigXplorer appears, followed by the Product selection dialog box.

6. Select the appropriate license and click **OK**.

16.6 Allegro Sigrity SI Product Choices	— ×
Select a Product:	
Allegro PCB SI GXL (legacy) Allegro PCB SI XL	OK
Allegro Sigrity SI Allegro PCB Multi-Gigabit Option	Cancel
Allegro PCB SI L (legacy) Allegro PCB SI Performance (legacy)	
Allegro PCB SI Serial Link (legacy)	Help
Available Product Options	
PCB SI Performance	
PCB SI Multi-Gigabit	
🔲 Use as default 👘 Reset license cach	e

The exported topology is displayed in Allegro SigXplorer.

	<u>E</u> dit ∖	(iew	Setup	<u>A</u> na	lyze	Help																							cāden
	P (-	\$		4		Ø	٠	×	OD	12	2	Q	Q	Q	۹	ব	16			₽	5	õ	\$		d Ú	?		
	-6																									2 Para	meters		4
Vr-	₿ų																										1	Name	Value
n.	B I																									E	CIRCU	JIT	1
	₽₫																											autoSolve	Off
H I																												tlineDelayMode	time
	1																											userRevision	1.0
-	•=•																										myo	cons	
	1																									0	= c	ONTROLLER	
j‡	• <u>•</u> •• ×																											bufferModel	DDR3_DQ3
	11 1																									1	= M	IEM1	
H																												bufferModel	DDR3_DQ3
	9	00	NTRO	LER				ME	M1				ME	M2				ME					ĥ	MEM4				IEM2	
		Ór	PULSE remiter					TRISTA Voma					IRIĜI A Morte					IRIST: Vices						SIAL_ mary				IEM3	
																												IEM4	
•••	-		$-\lambda$																									CB	
-	9					PCB :	2				ВC	B 3				PC	b 4				PC							CB_1	
									\sim			Б З 810-		\sim		PL			\sim		MUGA							impedance	60 ohm
-	0		J0-43_3	034_NO_	20	vî nhm		, JD-6	1_3034	<u>vo</u> br	sti e	hm.	16 304	3_J034	_KO_QU	জী চ	hm	15 30	6_0034_	NO_DJ	ưới nh	•		ie-a_uea	4_NO_DJ			propDelay	0.5 ns
	- 0 - C		-			Ų	⊢• −	•		_	T.		-		_	<u>_</u> ل		<u> </u>		-	₽_		Ξ.					traceGeometry	Microstrip
-	1 1					US NS					0.51	n9				0.51	6				U.5 rs							velocity	5600 mil/ns
	1 1	×	Commar	id Outpi	ut Win	dow																						CB_2	
•		•																										impedance	60 ohm
		÷																										propDelay	0.5 ns
9		Commai																										traceGeometry	Microstrip
		15	Comma	nd >																								velocity	5600 mil/ns
9.																											+ P	CB_3	

Similarly, you can export the topology information for other nets as well. On the same SystemSI design, when you repeat the steps listed above, you will observe that the **Export Constraint Topology** dialog box is not displayed. This is because the connectivity information generated in the first run is used to populate the Signal Connectivity dialog box.

	Do not use the constraint topologies in SigXplorer for simulations. This is
~	because during the export process, various SystemSI blocks — such as S-
Caution!	Param, PCB, traces, package blocks, and so on —are translated to ideal T-
	Lines, so that they are understood by SigXplorer as a constraint topology.

11.2 SystemSI Integration with TimingDesigner

SystemSI provides support for exporting timing measurements to TimingDesigner, a timing analysis tool from EMA. To export the bus data from SystemSI to TimingDesigner, perform the following tasks.

- Enable Integration with TimingDesigner
 - a) From the Tools menu, choose Option -- Edit Options.
 - b) From the left pane of the Options dialog box, select Generate Report.
 - c) Select the **Interface to TimingDesigner** check box.

imulation 🤅	
General	Change the 'Generate Report' options in Parallel Bus
Result	
leasurement Report 🤅	2
Generate Report	Generate Report
	Logo File: logo.png
	✓ Interface to TimingDesigner
	Default Apply OK Cano

- d) To close the dialog box and save the changes, click **OK**.
- Launch Timing Designer

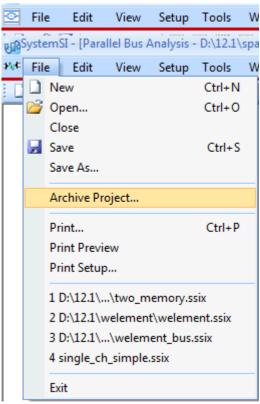
a) From the work flow, select Generate Report.

Workflow: SystemSI
Parallel Bus Analysis
Bus Setup 📀
Load a New/Existing Workspace Assign IBIS Models Edit Bus Models
Simulation Setup 🔗
Set Timing Budget Set Analysis Options Check Signal Connectivity Run Bus Simulation
Simulation Results
Show Simulation Curves Browse Results DDR Measurement Report
Generate Report Export Report Show Measurement Results

b) In the Timing Designer tab, specify the location of the executable.

HTML Header TimingDesigner	
td.exe: D:\Cadence\SPB_16.6\ASI\Update3\timing_designer\td.win9253_rel.exe	Launch

c) Select Launch to invoke Timing Designer


SystemSI generates the configuration file based on the timing measurements and launches the TimingDesigner to draw the timing diagram.

By default, Setup and Hold measurements are exported to the TimingDesigner. However, for Data Read results, you can specify whether the ReadSkew or Setup and Hold measurements are to be exported.

	The SystemSI generated configuration files contain information about
NOTE!	simulation setup, bus group definition, and timing measurement results. These
110120	are required by TimingDesigner to generate timing diagrams.

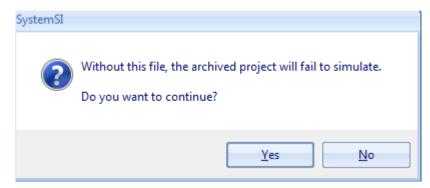
11.3 Auto Archive SSI Project

1. Choose File > Archive Project....

The Archive Project window opens.

2. Specify Project Location and Project Name for the copied project.

Project Location: D:\12.1 welement_copy	Project Location:	D:\12.1		Project Name:	welement_copy	
---	-------------------	---------	--	---------------	---------------	--


By default:

- The location of the original project is selected for the copied project location
- <original_project_name>_copy is set for the copied project name
- 3. Check the files that should be included in the copied project.

By default,

- The files under the original project folder and under the original sub-folders are listed and checked for archiving, and will be copied to the new project folder
- The files used by the original project but located other than the original project folder are listed and checked, and they will be copied to a sub-folder named **Ref** under the new project folder
- The files under the **history**, **result**, **result**(**bat**), **bufferdelay** and **Report** sub-folders are not listed

If you want to uncheck a file used by the original project, the following message opens.

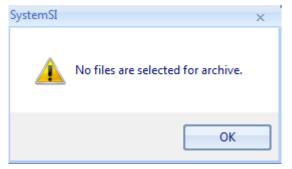
- 4. To add additional file, click the **Add File...** button.
- 5. To add additional folder, click the **Add Folder...** button.
 - The files checked and used by the original project are highlighted in blue

Archive Project		□ ×
Project Location: D:\12.1	Project Name: welement_copy	
Original File	Target File	
 D:\12.1\models\pcb_traces.sp D:\12.1\welement\pcb_traces.sp D:\12.1\welement\si_pba_ex.ibs D:\12.1\welement\vrm.sp D:\12.1\welement\welement.ssix 	RefD\12.1\models\pcb_traces.sp pcb_traces.sp ssi_pba_ex.ibs vrm.sp welement_copy.ssix	
Add File Add Folder Uncheck All	✓ Zip Project	Archive Cancel

• The files not used by the original project are not highlighted, and they can be deleted from the list

Archive Project		□ ×
Project Location: D:\12.1	Project Name: welement_copy	
Original File	Target File	
D:\12.1\models\pcb_traces.sp	Ref\D\12.1\models\pcb_traces.sp	
D:\12.1\welement brace sp D:\12.1\welement Delete ins	pcb_traces.sp	
w b. (12.1) weichen	ssi_pba_ex.ibs	
 ☑ D:\12.1\welement\vrm.sp ☑ D:\12.1\welement\welement.ssix 	vrm.sp welement_copy.ssix	
	weienent_copy.sax	
Add File Add Folder Uncheck All	✓ Zip Project Archiv	re Cancel

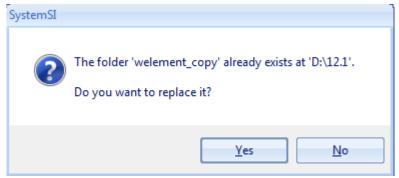
• The files are highlighted in red if they are used by the original project but do not exist or are un-checked


rchive Project		□ ×
Project Location: D:\12.1	Project Name: welement_copy	
Original File	Target File	
Vijnarite Vil2.1\models\pcb_traces.sp D;\12.1\welement\pcb_traces.sp D;\12.1\welement\ssi_pba_ex.ibs D;\12.1\welement\vrm.sp V D:\12.1\welement\vrm.sp V D:\12.1\welement\vrm.sp	Ref\D12.1\models\pcb_traces.sp pcb_traces.sp ssi_pba_ex.ibs vrm.sp welement_copy.ssix	
Add File Add Folder Uncheck All	Zip Project Archi	ve Cancel

NOTE! If there are any files highlighted in red, the copied project will fail to simulate.

- 6. Click the Archive button to generate the copied project.
 - All the checked files will be copied to the copied project
 - If the **Zip Project** option is checked, a zipped project file will be created. Otherwise, a new project folder will be created for the copied project

The following messages may appear while archiving:


• If no files are checked, the following message displays.

• If the file used by the original project does not exist, the following message opens

SystemSI	
?	Files highlighted in red are not found. Without them, the archived project will fail to simulate. Do you want to continue?
	<u>Y</u> es <u>N</u> o

• If the designated project folder already has the archived project folder or zipped file, the following messages open

SystemSI	
?	The zipped project file 'welement_copy.zip' already exists at 'D:\12.1'. Do you want to replace it?
	<u>Y</u> es <u>N</u> o
• If the ar	chive project process completes successfully, the following messages open
SystemSI	×
j	Archive Project has completed successfully and the zipped project file 'welement_copy.zip' is located at 'D:\12.1'.
	ОК
SystemSI	×
1	Archive Project has completed successfully and the copied project folder 'welement_copy' is located at 'D:\12.1'.
	ОК

A Appendix: Batch Mode Support

A.1 Batch Mode Command

List of the batch mode commands for SystemSI - Parallel Bus Analysis:

```
<ExeFileFullPath\SystemSI.exe> -b -sim <workspace file>
```

 $\backslash\!\!\backslash$ for the default SSI simulation. For a PBA workspace, it will generate the DDR report and export the html file to the default folder

<ExeFileFullPath\SystemSI.exe> -b -sim:sweep <workspace file> \\ for the sweep. For a PBA workspace, it will generate the DDR report and export the html file to the default folder

```
<ExeFileFullPath\SystemSI.exe> -b -sim:freq <workspace file>
```

 \parallel for the frequency response

<ExeFileFullPath\SystemSI.exe> -b -sim:sparam <workspace file>

 \parallel for the S-parameter extraction

Example for Windows OS:

```
Path\SystemSI.exe -b -sim
"C:\Working\SystemSI\pbs\pbs_1\pbs_1.ssix"
Path\SystemSI.exe -b -sim:sweep
"C:\Working\SystemSI\pbs\pbs_1\pbs_1.ssix"
Path\SystemSI.exe -b -sim:freq
"C:\Working\SystemSI\pbs\pbs_1\pbs_1.ssix"
Path\SystemSI.exe -b -sim:sparam
"C:\Working\SystemSI\pbs\pbs_1\pbs_1.ssix"
```

A.2 Run a .bat file

1. Put down the batch mode commands into a .bat file.

Example for Windows OS:

```
(pbs_1.ssix: a PBA workspace)
%systemsi% -b -sim "C:\Working\SystemSI\pbs_1\pbs_1.ssix"
%systemsi% -b -sim:sweep
"C:\Working\SystemSI\pbs_1\pbs_1.ssix"
%systemsi% -b -sim:freq
"C:\Working\SystemSI\pbs_1\pbs_1.ssix"
```

```
%systemsi% -b -sim:sparam
"C:\Working\SystemSI\pbs_1\pbs_1.ssix"
```

To run the tests simultaneously, make the following modification in the tested .bat file: set systemsi=start "the full path of the systemsi.exe"

NOTE! Replace the red font part with the full path of SystemSI.exe file.

2. Double-click the .bat file to run it.

A.3 Result Folder for Batch Mode

A new sub-folder **result(bat)** will be added for all batch mode results. Each batch mode simulation has its own sub-folder under the **result(bat)** folder.

For a PBA workspace, each result is located in its responding sub-folder.

Example

 Local Dis 	sk (C:) 🕨 Working	 System 	mSI ▶ p	bs ▶ pbs_1 ▶ result	(bat) 🕨
brary 🔻	Share with 💌	Burn	New fo	older	
Name	^			Date modified	Туре
鷆 freq				1/28/2013 2:42 PM	File folder
📗 sim				1/28/2013 2:42 PM	File folder
퉬 sim1				1/28/2013 2:42 PM	File folder
퉬 sparan	n			1/28/2013 2:42 PM	File folder
퉬 sweep				1/28/2013 2:42 PM	File folder
📗 sweep	1			1/28/2013 2:42 PM	File folder

The result(bat) folder is available from Results Browser.

older	Simulation Name	Simulation Type	
9 🗖 🔑 result			
🛿 🔲 퉲 history			
🛛 🔲 🌗 result(bat)			
🕀 🗖 🌗 freq			
🕀 🔲 🍌 sim			
🕀 🔲 鷆 sim 1			
🕀 🔲 🌗 sparam			
🖃 🔲 🍌 sweep			
🖃 🗖 퉲 1			
Data_Write_Typ_Typ_Rank1_1	1\Data_Write_Typ_Typ_Rank	Data Bus Simulation, Write	
Data_Write_Typ_Typ_Rank1_2	1\Data_Write_Typ_Typ_Rank	Data Bus Simulation, Write	
🔲 퉲 Data_Write_Typ_Typ_Rank1_3	1\Data_Write_Typ_Typ_Rank	Data Bus Simulation, Write	
🖃 🔲 퉬 sweep 1			
🖃 🗖 强 1			
Data_Write_Typ_Typ_Rank1_1	1\Data_Write_Typ_Typ_Rank	Data Bus Simulation, Write	
Data_Write_Typ_Typ_Rank1_2	1\Data_Write_Typ_Typ_Rank	Data Bus Simulation, Write	
🔲 퉲 Data_Write_Typ_Typ_Rank1_3	1\Data_Write_Typ_Typ_Rank	Data Bus Simulation, Write	

In Sweep Manager, all the sweep results including those in the result(bat) folder are listed under the Results > History tab.

Current Histor	У		Export	Show Result
Iteration	Folder	Max Overshoot	Min Ringback M	Min Ringback N
√ 1	result(bat)\sweep1\1\Data_Write_Typ_Typ_Rank1_1			
2	result(bat)\sweep1\1\Data_Write_Typ_Typ_Rank1_2			
V 3	result(bat)\sweep1\1\Data_Write_Typ_Typ_Rank1_3			
✓ 1	result(bat)\sweep\1\Data_Write_Typ_Typ_Rank1_1			
V 2	result(bat)\sweep\1\Data_Write_Typ_Typ_Rank1_2			
V 3	result(bat)\sweep\1\Data_Write_Typ_Typ_Rank1_3			
•	111			1
lick 'Show Result'	button to show the results of the checked iterations, or double click on	an iteration to show th	ne results.	

A.4 batch_mode.log File

If a simulation does not run or fails for any reasons, please check the batch_mode.log file located under the **result(bat)** folder.

Error messages are added to batch_mode.log for the following failures:

- The sweep parameter is not defined for the sweep analysis
- The ports are not defined for the S-parameter extraction