
PCI-X Addendum to the PCI Local
Bus Specification

Revision 1.0b

July 29, 2002

Revision 1.0b

2

REVISION REVISION HISTORY DATE
1.0 Initial release. 9/22/99
1.0a Clarifications and typographical corrections. 7/24/00
1.0b Clarifications and errata. 7/29/02

PCI-SIG disclaims all warranties and liability for the use of this document and the information
contained herein and assumes no responsibility for any errors that may appear in this document, nor
does PCI-SIG make a commitment to update the information contained herein.

Contact the PCI-SIG office to obtain the latest revision of the specification.

Questions regarding the PCI-X Addendum or membership in PCI-SIG may be forwarded to:

Membership Services
5440 SW Westgate Drive,
Suite 217
Portland, OR 97221 USA
(administration@pcisig.com)
Phone: 503-291-2569
Fax: 503-297-1090

PCI SIG Specification Distribution
5440 SW Westgate Drive,
Suite 217
Portland, OR 97221 USA
1-800-433-5177 (Domestic Only)
(425) 803-1191 (International)
(503) 222-6190 (Fax)

DISCLAIMER

This PCI-X Addendum is provided "as is" with no warranties whatsoever, including any
warranty of merchantability, noninfringement, fitness for any particular purpose, or any
warranty otherwise arising out of any proposal, specification, or sample. PCI-SIG
disclaims all liability for infringement of proprietary rights, relating to use of information
in this specification. No license, express or implied, by estoppel or otherwise, to any
intellectual property rights is granted herein.

All product names are trademarks, registered trademarks, or servicemarks of their respective owners.

Copyright © 1999, 2000, 2002 PCI-SIG

Revision 1.0b

3

Contents

Preface .. 11

1. Introduction ... 13

1.1. Documentation Conventions... 15
1.2. Terms and Abbreviations .. 16
1.3. Figure Legend ... 23
1.4. Transaction Comparison Between PCI-X and Conventional PCI... 23
1.5. Burst and DWORD Transactions.. 26
1.6. Wait States .. 27
1.7. Split Transactions.. 27
1.8. Bus Width ... 28
1.9. Compatibility and System Initialization.. 28
1.10. Summary of Protocol Rules .. 29

1.10.1. General Bus Rules.. 29
1.10.2. Initiator Rules... 30
1.10.3. Target Rules ... 32
1.10.4. Bus Arbitration Rules... 33
1.10.5. Configuration Transaction Rules.. 33
1.10.6. Parity Error Rules... 34
1.10.7. Bus Width Rules .. 34
1.10.8. Split Transaction Rules .. 35

1.11. PCI-X Transaction Flow ... 35

2. PCI-X Transaction Protocol .. 39

2.1. Sequences.. 39
2.2. Allowable Disconnect Boundaries and Buffer Size .. 40
2.3. Dependencies Between Address, Byte Count, and Byte Enables ... 41
2.4. PCI-X Command Encoding .. 43
2.5. Attributes .. 45
2.6. Burst Transactions .. 49

2.6.1. Burst Writes and Split Completions ... 51
2.6.2. Burst Reads .. 56

2.7. DWORD Transactions .. 59
2.7.1. DWORD Memory and I/O Transactions.. 59
2.7.2. Configuration Transactions .. 60

2.7.2.1. Configuration Transaction Timing... 61
2.7.2.2. Configuration Transaction Address and Attributes.. 62

2.7.3. Special Cycle Transactions .. 64
2.7.4. Interrupt Acknowledge Transactions ... 65

2.8. Device Select Timing.. 66
2.8.1. Writes and Split Completions... 66
2.8.2. Reads .. 68

2.9. Wait States .. 70
2.9.1. Target Initial Latency ... 70
2.9.2. Wait States on Writes and Split Completions .. 72
2.9.3. Wait States on Reads.. 76

2.10. Split Transactions.. 78
2.10.1. Basic Split Transaction Requirements.. 79
2.10.2. Split Completion .. 81
2.10.3. Split Completion Address .. 84
2.10.4. Completer Attributes .. 86
2.10.5. Requirements for Accepting Split Completions ... 88
2.10.6. Split Completion Messages .. 89

2.10.6.1. Write Completion Message Class.. 90
2.10.6.2. Completer Error Message Class .. 90

Revision 1.0b

4

2.11. Transaction Termination ... 92
2.11.1. Initiator Termination... 93

2.11.1.1. Initiator Disconnection or Satisfaction of Byte Count ... 93
2.11.1.2. Master-Abort Termination ... 95

2.11.2. Target Termination and Data Phase Signaling ... 96
2.11.2.1. Single Data Phase Disconnection .. 97
2.11.2.2. Disconnection at Next ADB .. 100
2.11.2.3. Retry Termination.. 103
2.11.2.4. Split Response Termination... 104
2.11.2.5. Target-Abort Termination.. 105

2.12. Bus Width.. 106
2.12.1. Address Width .. 106
2.12.2. Attribute Width... 108
2.12.3. Data Transfer Width ... 108

2.13. Required Acceptance and Completion Rules for Simple Devices .. 113
2.14. Quiescing Device Operation ... 115
2.15. Snooping PCI-X Transactions... 116

3. Device Requirements...117

3.1. Source Sampling ... 117
3.2. Message-Signaled Interrupts ... 118
3.3. PCI Power Management.. 118

4. Arbitration...119

4.1. Arbitration Signaling Protocol .. 119
4.1.1. Device Requirements.. 120
4.1.2. Arbiter Requirements ... 121

4.2. Arbitration Parking.. 123
4.3. Arbiter Coordination with the PCI Hot-Plug Controller ... 124
4.4. Latency Timer ... 124

5. Error Functions ..125

5.1. Parity Generation... 126
5.2. Parity Checking ... 126
5.3. Parity Timing .. 126
5.4. Error Handling and Fault Tolerance.. 131

5.4.1. Data Parity Errors ... 131
5.4.1.1. Devices and Software Drivers that Support Data Parity Error Recovery..................... 132
5.4.1.2. Devices or Software Drivers That Do Not Support Data Parity Error Recovery 132
5.4.1.3. Data Parity Errors in Split Response for Read Transactions .. 133

5.4.2. Target-Abort and Master-Abort Exceptions ... 134
5.4.3. Address and Attribute Parity Errors ... 134
5.4.4. Split Transaction Errors.. 134
5.4.5. Corrupted or Unexpected Split Completions.. 135
5.4.6. Reporting Split Completion Error Messages .. 136

6. System Interoperability and Initialization...139

6.1. Interoperability .. 139
6.1.1. Device and Add-In Card Interoperability Requirements .. 139
6.1.2. System Interoperability Requirement ... 139
6.1.3. Interoperability Matrix ... 140

6.2. Initialization Requirements ... 141
6.2.1. Device and Add-in Card Initialization Requirements... 142
6.2.2. System Initialization Requirements .. 144
6.2.3. Mode and Frequency Initialization Sequence... 144

6.2.3.1. System Power-Up... 144
6.2.3.2. Hot Insertion in a PCI-X System.. 145

6.2.4. Device Number and Bus Number Initialization.. 146

Revision 1.0b

5

7. Configuration Space for Type 00h Header Devices .. 149

7.1. PCI-X Effects on Conventional Configuration Space Header .. 149
7.2. PCI-X Capabilities List Item... 150

7.2.1. PCI-X ID .. 151
7.2.2. Next Capabilities Pointer ... 151
7.2.3. PCI-X Command Register.. 151
7.2.4. PCI-X Status Register .. 153

7.3. Use of I/O Space ... 157

8. PCI-X Bridge Additional Design Requirements ... 159

8.1. Summary of Key Requirements .. 159
8.2. PCI-X Bridges and Application Bridges ... 160
8.3. Address Decoding ... 160
8.4. Bridge Operation... 161

8.4.1. Buffer Size Requirements .. 161
8.4.2. Forwarding Split Transactions ... 163

8.4.2.1. Split Completion Buffer Allocation ... 165
8.4.2.2. Immediate Completion by the Completer .. 168
8.4.2.3. Split Request Capacity Recommendations .. 169

8.4.3. Connecting PCI-X and Conventional PCI Interfaces ... 169
8.4.3.1. Conventional Requester, PCI-X Completer ... 170

8.4.3.1.1. Conventional PCI to PCI-X Command Translation and Byte Count Generation 170
8.4.3.1.2. Delayed Transaction to Split Transaction Conversion .. 171
8.4.3.1.3. Conventional PCI to PCI-X Attribute Creation... 171

8.4.3.2. PCI-X Requester, Conventional Completer ... 172
8.4.3.2.1. PCI-X to Conventional PCI Command Translation .. 172
8.4.3.2.2. Split Transaction to Delayed Transaction Conversion .. 173
8.4.3.2.3. Creating a Split Completion .. 173

8.4.4. Transaction Ordering and Passing Rules for Bridges... 173
8.4.5. Required Acceptance Rules for Bridges... 176
8.4.6. Forwarding Memory Write Transactions ... 177

8.5. Exclusive Access .. 179
8.5.1. Starting an Exclusive Access ... 181
8.5.2. Continuing an Exclusive Access .. 184
8.5.3. Accessing a Locked Bridge .. 185
8.5.4. Completing an Exclusive Access ... 185

8.6. PCI-X Bridge (Type 01h) Configuration Registers .. 186
8.6.1. PCI-X Effects on Conventional Bridge Configuration Space Header.............................. 186
8.6.2. PCI-X Bridge Capabilities List Item .. 187

8.6.2.1. PCI-X ID.. 188
8.6.2.2. Next Capabilities Pointer ... 188
8.6.2.3. PCI-X Secondary Status Register .. 189
8.6.2.4. PCI-X Bridge Status Register .. 191
8.6.2.5. Upstream Split Transaction Register ... 194
8.6.2.6. Downstream Split Transaction Register... 195

8.7. PCI-X Bridge Error Support ... 196
8.7.1. PCI-X Originating Bus ... 196

8.7.1.1. Data Parity Error on an Immediate Read ... 196
8.7.1.2. Data Parity Error on a Non-Posted Write .. 196
8.7.1.3. Data Parity Error on a Split Completion .. 197
8.7.1.4. Data Parity Error on a Posted Write... 197
8.7.1.5. Master-Abort.. 198
8.7.1.6. Target-Abort .. 199

8.7.2. Conventional PCI Originating Bus... 200
8.8. PCI-X Bridge Error Class Split Completion Message .. 200
8.9. Secondary Bus Mode and Frequency Initialization Sequence .. 201

Revision 1.0b

6

9. Electrical Specification..203

9.1. DC Specifications.. 203
9.2. AC Specifications.. 204
9.3. Maximum AC Ratings and Device Protection .. 207
9.4. Timing Specification ... 207

9.4.1. Clock Specification .. 207
9.4.2. Timing Parameters.. 209
9.4.3. Measurement and Test Conditions ... 210
9.4.4. Device Internal Timing Examples .. 212

9.5. Clock Uncertainty ... 214
9.6. Reset.. 214
9.7. Pull-ups ... 215
9.8. System Noise Budget .. 216
9.9. System Timing Budgets .. 217
9.10. PCIXCAP Connection... 218
9.11. IDSEL Connection to AD Bus .. 219
9.12. Power .. 219

9.12.1. Power Requirements... 219
9.12.2. Sequencing ... 219
9.12.3. Decoupling ... 219

9.13. Add-in Card Routing Requirements.. 219
9.13.1. Signal Loading.. 220
9.13.2. Trace Length... 220
9.13.3. Crosstalk ... 220
9.13.4. Transmission Line Characteristics.. 220

10. Appendix—Conventional PCI vs. AGP vs. PCI-X Protocol Rule
Comparison ..221

11. Appendix—Use Of Relaxed Ordering..225

11.1. Relaxed Write Ordering .. 226
11.2. Relaxed Read Ordering ... 226
11.3. Co-location of Payload and Control .. 227
11.4. Other Uses of Relaxed Ordering ... 227
11.5. I2O Usage Models ... 228

11.5.1. I2O Messaging Protocol Operation ... 228
11.5.2. Message Delivery with the Push Model ... 229
11.5.3. Message Delivery with the Pull Model .. 230
11.5.4. Message Delivery with the Outbound Option .. 231
11.5.5. Message Delivery with Peer to Peer... 231

12. Appendix—Minimal PCI Power Management Support233

13. Appendix—Setting Performance Registers..235

13.1. Setting the Maximum Memory Read Byte Count Register ... 235
13.2. Optimizing the Split Transaction Commitment Limits in PCI-X Bridges 235

14. Appendix—Detection of PCI-X Add-in Card Capability................................237

14.1. Three-level Comparator .. 237
14.2. Programmable Pull-up and Binary Input Buffer ... 239

15. Appendix—Add-In Card Multilayer Board Spacing and Stack-Up Examples
241

15.1. Six-Layer-Board Examples ... 241
15.2. Eight-Layer-Board Examples.. 243

Revision 1.0b

7

Figures
Figure 1-1: Typical Conventional PCI Write Transaction... 24
Figure 1-2: Typical PCI-X Write Transaction... 25
Figure 1-3: Transaction Flow without Crossing a Bridge ... 37
Figure 1-4: Transaction Flow Across a Bridge.. 38
Figure 2-1: Burst Transaction Requester Attribute Bit Assignments .. 45
Figure 2-2: DWORD Transaction Requester Attribute Bit Assignments.. 45
Figure 2-3: Burst Memory Write Transaction with No Target Initial Wait States 54
Figure 2-4: Burst Memory Write Transaction with Two Target Initial Wait States 55
Figure 2-5: Burst Memory Read Transaction with No Target Initial Wait States 57
Figure 2-6: Burst Memory Read Transaction with Target Initial Wait States ... 58
Figure 2-7: DWORD Write Transaction with No Wait States and Data Transfer....................................... 60
Figure 2-8: DWORD Read with Two Target Initial Wait States and Data Transfer 60
Figure 2-9: Configuration Write Transaction .. 61
Figure 2-10: Configuration Read Transaction... 62
Figure 2-11: Configuration Transaction Address Format.. 63
Figure 2-12: Type 0 Configuration Transaction Requester Attribute Bit Assignments 64
Figure 2-13: Special Cycle .. 65
Figure 2-14: DEVSEL# Timing .. 66
Figure 2-15: Burst Write with DEVSEL# Decode A and No Initial Wait States .. 67
Figure 2-16: Burst Write with DEVSEL# Decode B and No Initial Wait States .. 67
Figure 2-17: Burst Write with DEVSEL# Decode C and No Initial Wait States .. 67
Figure 2-18: Burst Write with Subtractive DEVSEL# Decode and No Initial Wait States 68
Figure 2-19: Burst Read with DEVSEL# Decode A and No Initial Wait States ... 68
Figure 2-20: Burst Read with DEVSEL# Decode B and No Initial Wait States ... 69
Figure 2-21: Burst Read with DEVSEL# Decode C and No Initial Wait States ... 69
Figure 2-22: Burst Read with Subtractive DEVSEL# Decode and No Initial Wait States.......................... 69
Figure 2-23: Burst Write Transaction with DEVSEL# Decode A and Two Initial Wait States.................. 73
Figure 2-24: Burst Write Transaction with DEVSEL# Decode A and Four Initial Wait States.................. 73
Figure 2-25: Burst Write Transaction with DEVSEL# Decode B and Two Initial Wait States 74
Figure 2-26: Burst Write Transaction with DEVSEL# Decode B and Four Initial Wait States 74
Figure 2-27: Burst Write Transaction with DEVSEL# Decode C and Two Initial Wait States.................. 74
Figure 2-28: Burst Write Transaction with DEVSEL# Decode C and Four Initial Wait States.................. 75
Figure 2-29: DWORD Write Transaction with DEVSEL# Decode A and Two Initial Wait States............ 75
Figure 2-30: DWORD Write Transaction with DEVSEL# Decode C and Two Initial Wait States............ 75
Figure 2-31: Burst Read Transaction with DEVSEL# Decode A and One Initial Wait State..................... 76
Figure 2-32: Burst Read Transaction with DEVSEL# Decode A and Two Initial Wait States................... 76
Figure 2-33: Burst Read Transaction with DEVSEL# Decode A and Three Initial Wait States................. 77
Figure 2-34: Burst Read Transaction with DEVSEL# Decode A and Four Initial Wait States................... 77
Figure 2-35: Burst Read Transaction with DEVSEL# Decode C and Two Initial Wait States 77
Figure 2-36: DWORD Read Transaction with DEVSEL# Decode A and Two Initial Wait States 78
Figure 2-37: DWORD Read Transaction with DEVSEL# Decode C and Two Initial Wait States............. 78
Figure 2-38: Split Completion Address ... 84
Figure 2-39: Completer Attribute Bit Assignments... 86
Figure 2-40: Split Completion Message Format.. 89
Figure 2-41: Initiator Termination of a Burst Transaction with Four or More Data Phases........................ 93
Figure 2-42: Initiator Termination of a Burst Transaction with Three Data Phases.................................... 94
Figure 2-43: Initiator Termination of a Burst Transaction with Two Data Phases...................................... 95
Figure 2-44: Initiator Termination of a Burst Transaction with One Data Phase.. 95
Figure 2-45: Master-Abort Termination .. 95
Figure 2-46: Single Data Phase Disconnection ... 98
Figure 2-47: Disconnect at Next ADB Four Data Phases from an ADB... 101
Figure 2-48: Disconnect at Next ADB on ADB N .. 101
Figure 2-49: Disconnect at Next ADB with Starting Address Three Data Phases from an ADB 102
Figure 2-50: Disconnect at Next ADB with Starting Address Two Data Phases from an ADB 102
Figure 2-51: Disconnect at Next ADB with Starting Address One Data Phase from an ADB.................. 102
Figure 2-52: Retry Termination... 103
Figure 2-53: Split Response Termination for a Read Transaction... 104

Revision 1.0b

8

Figure 2-54: Split Response Termination for a DWORD Write Transaction .. 104
Figure 2-55: Target-Abort on First Data Phase ... 105
Figure 2-56: Target-Abort after Data Transfer .. 106
Figure 2-57: Dual Address Cycle 64-bit Memory Read Burst Transaction... 108
Figure 2-58: 64-bit Initiator Reading from 32-bit Target Starting on Even DWORD............................... 110
Figure 2-59: 64-bit Initiator Reading from 32-bit Target Starting on Odd DWORD 110
Figure 2-60: 64-bit Initiator Writing to 32-bit Target Starting on Even DWORD 111
Figure 2-61: 64-bit Initiator Writing to 32-bit Target Starting on Odd DWORD...................................... 111
Figure 2-62: 64-bit Initiator Writing to 32-bit Target Starting on Odd DWORD, with DEVSEL# Decode A

and Two Initial Wait States.. 112
Figure 2-63: 64-bit Initiator Writing to 32-bit Target Starting on Odd DWORD, with DEVSEL# Decode A

and Four Initial Wait States.. 112
Figure 2-64: 64-bit Initiator Writing to 32-bit Target Starting on Odd DWORD, with DEVSEL# Decode B

... 112
Figure 2-65: 64-bit Initiator Writing to 32-bit Target Starting on Odd DWORD, with DEVSEL# Decode C

and Two Initial Wait States.. 113
Figure 3-1: A Logic Block Diagram for Bypassing Source Sampling ... 117
Figure 4-1: Arbitration Example.. 122
Figure 4-2: Initiating a Transaction While the Bus Is Parked.. 123
Figure 5-1: Burst Write or Split Completion Transaction Parity Operation .. 127
Figure 5-2: Burst Read Transaction Parity Operation.. 128
Figure 5-3: DWORD Read Parity Operation with DEVSEL# Decode A and No Initial Wait States........ 128
Figure 5-4: DWORD Read Parity Operation with DEVSEL# Decode B and No Initial Wait States........ 129
Figure 5-5: DWORD Write Parity Operation with DEVSEL# Decode A and No Initial Wait States....... 130
Figure 5-6: DWORD Write Parity Operation with DEVSEL# Decode B and No Initial Wait States....... 130
Figure 6-1: Interoperability Matrix for Frequency and I/O Voltage.. 140
Figure 6-2: PCI-X Mode Latch.. 143
Figure 7-1: PCI-X Capabilities List Item for a Type 00h Configuration Header 151
Figure 8-1: Starting an Exclusive Access with an Immediate Transaction .. 182
Figure 8-2: Starting an Exclusive Access with a Split Transaction ... 183
Figure 8-3: Continuing an Exclusive Access, Immediate Transaction .. 184
Figure 8-4: Accessing a Locked Downstream Bridge ... 185
Figure 8-5: PCI-X Capabilities List Item for a Type 01h Configuration Header 187
Figure 9-1: PCI-X Pull-Up Output Buffer I/V Curves... 205
Figure 9-2: PCI-X Pull-Down Output Buffer I/V Curves.. 206
Figure 9-3: PCI-X Pull-Up Output Buffer V/I Curves (ref)... 206
Figure 9-4: PCI-X Pull-Down Output Buffer V/I Curves (ref).. 207
Figure 9-5: 3.3V Clock Waveform .. 208
Figure 9-6: Output Timing Measurement Conditions.. 210
Figure 9-7: Input Timing Measurement Conditions .. 210
Figure 9-8: Tval(max) Rising Edge Test Load .. 211

Figure 9-9: Tval(max) Falling Edge Test Load ... 211

Figure 9-10: Tval(min) Test Load ... 211

Figure 9-11: Output Slew Rate Test Load ... 212
Figure 9-12: Device Internal Timing Example .. 212
Figure 9-13: Clock Uncertainty Diagram .. 214
Figure 9-14: RST# Timing for Switching to PCI-X Mode Pull-ups.. 214
Figure 9-15: PCI-X Noise Budget ... 216
Figure 11-1: I2O Standard Components... 228
Figure 11-2: I2O Push Model... 230
Figure 11-3: I2O Pull Model .. 231
Figure 14-1: Three-Level Comparator Circuit ... 238
Figure 14-2: Three-Level Comparator Voltage Ranges... 238
Figure 14-3: Programmable Pull-Up Circuit ... 239
Figure 14-4: Threshold Ranges with Programmable Pull-Up.. 240
Figure 15-1: Example Six-Layer Stack-Up Using Stripline and Dual Microstrip 241
Figure 15-2: Example Six-Layer Stack-Up Using Stripline and Single Microstrip................................... 242
Figure 15-3: Example Eight-Layer Stack-up ... 243

Revision 1.0b

9

Tables
Table 1-1: Conventional PCI Transaction Phase Definitions .. 24
Table 1-2: PCI-X Transaction Phase Definitions .. 26
Table 1-3: Comparison of Burst Transactions and DWORD Transactions... 27
Table 2-1: Byte Lane Assignments ... 41
Table 2-2: AD[1::0] and Byte Enable Encodings for I/O and DWORD Memory Transactions.................. 42
Table 2-3: Starting Address and Byte Enable Dependencies for 32-bit Transactions Using the Memory

Write Command... 43
Table 2-4: Starting Address and Byte Enable Dependencies for 64-bit Transactions Using the Memory

Write Command... 43
Table 2-5: PCI-X Command Encoding ... 44
Table 2-6: Burst and DWORD Requester Attribute Field Definitions .. 46
Table 2-7: IDSEL Generation.. 63
Table 2-8: DEVSEL# Timing.. 66
Table 2-9: Target Initial Latency... 70
Table 2-10: Split Completion Address Field Definitions .. 84
Table 2-11: Completer Attribute Field Definitions ... 86
Table 2-12: Split Completion Message Fields... 90
Table 2-13: Write Completion Message Index (Class 0)... 90
Table 2-14: Completer Error Messages Indices (Class 2) ... 91
Table 2-15: Data Phases Dependence on Starting Address and Bus Width .. 94
Table 2-16: Target Data Phase Signaling .. 96
Table 5-1: Reporting the Receipt of Split Completion Error Messages .. 136
Table 6-1: M66EN and PCIXCAP Encoding .. 141
Table 6-2: PCI-X Initialization Pattern.. 142
Table 7-1: PCI-X Command Register ... 151
Table 7-2: PCI-X Status Register .. 153
Table 8-1: Conventional PCI to PCI-X Command Translation... 170
Table 8-2: PCI-X to Conventional PCI Command Translation... 172
Table 8-3: Transactions Ordering and Deadlock-Avoidance Rules .. 175
Table 8-4: PCI-X Secondary Status Register .. 189
Table 8-5: PCI-X Bridge Status Register .. 191
Table 8-6: Upstream Split Transaction Register.. 194
Table 8-7: Downstream Split Transaction Register... 195
Table 8-8: PCI-X Bridge Error Messages Indices (Class 1) .. 201
Table 9-1: DC Specifications for PCI-X Devices.. 203
Table 9-2: AC Specifications .. 204
Table 9-3: Output Slew Rates.. 205
Table 9-4: Clock Specifications .. 208
Table 9-5: General Timing Parameters.. 209
Table 9-6: Measurement Condition Parameters .. 211
Table 9-7: Tval Delay Paths .. 213

Table 9-8: Tsu and Th Delay Paths ... 213

Table 9-9: Clock Uncertainty Parameters.. 214
Table 9-10: PCI-X System Noise Budget.. 216
Table 9-11: Setup Time Budget... 217
Table 9-12: Hold Time Budget.. 218
Table 9-13: IDSEL to AD Bit Assignment.. 219
Table 9-14: Add-in Card Trace Length ... 220
Table 9-15: Add-in Card Transmission Line Specifications ... 220
Table 10-1: Conventional PCI vs. AGP vs. PCI-X Protocol Comparison... 221
Table 14-1: Comparator Resistors and Thresholds.. 238
Table 15-1: Trace Spacing for Parallel Traces on Dual Microstrip ... 242

Revision 1.0b

10

Revision 1.0b

11

Preface

Since the introduction of the 66 MHz timing parameters of the PCI Local Bus
Specification in 1994, bandwidth requirements of peripheral devices have steadily grown.
Devices are beginning to appear on the market that support either a 64-bit bus, 66 MHz
clock frequency or both, with peak bandwidth capabilities up to 533 MB/s. Because of
faster I/O technologies such as Gigabit Ethernet, Ultra 3 SCSI, and Fibre Channel, faster
system-interconnect buses are required.

When an industry outgrows a widely accepted standard, that industry decides whether to
replace the standard or to enhance it. Since the release of the first PCI Local Bus
Specification in 1992, the PCI bus has become ubiquitous in the consumer, workstation,
and server markets. Its success has been so great that other markets such as industrial
controls, telecommunications, and high-reliability systems have leveraged the
specification and the wide availability of devices into specialty applications. Clearly, the
preferred approach to moving beyond today’s PCI Local Bus Specification is to enhance
it.

PCI-X enables the design of systems and devices that can operate at speeds significantly
higher than today’s specification allows. Just as importantly, it provides backward
compatibility by allowing devices to operate at conventional PCI frequencies and modes
when installed in conventional systems. Devices can be designed to meet PCI-X
requirements and operate as conventional 33 MHz and 66 MHz PCI devices when
installed in those systems. Similarly, if conventional PCI devices are installed in a bus
capable of PCI-X operation, the clock remains at a frequency acceptable to the
conventional device, and other devices on that bus are restricted to using conventional
protocol. This high degree of backward compatibility enables the easy migration of
systems and devices to bandwidths in excess of 1 GB/s.

Future Changes

Following publication of the PCI-X Addendum, Revision 1.0, there may be future
approved errata, clarification, and/or modifications to this specification, prior to the
issuance of another formal revision. To assure designs meet the latest level requirements,
designers of PCI-X devices must refer to the PCI SIG web site at http://www.pcisig.com
for the approved changes.

Revision 1.0b

12

Revision 1.0b

13

1. Introduction

The PCI-X Addendum, Revision 1.0 defines enhancements to the PCI Local Bus
Specification, Revision 2.2 (PCI 2.2), the PCI to PCI Bridge Architecture Specification,
Revision 1.1 (Bridge 1.1), the PCI Power Management Interface Specification, Revision
1.1 (PCI PM 1.1), and the PCI Hot-Plug Specification, Revision 1.0 (PCI HP 1.0), which
are the latest versions of these specifications at the time of release of this document. The
reader is advised to contact the PCI Special Interest Group for any later revisions.

The PCI-X definition introduces several major enhancements that enable faster and more
efficient data transfers:

1. Higher clock frequencies up to 133 MHz1.

2. Signaling protocol changes to enable registered outputs and inputs, that is, device
outputs that are clocked directly out of a register and device inputs that are clocked
directly into a register. The protocol is restricted such that devices have two clocks
to respond to any input changes.

3. New information passed with each transaction that enables more efficient buffer
management schemes.

• Each transaction in a Sequence (see definition in Section 1.2) identifies the total
number of bytes remaining to be read or written. If a transaction is disconnected,
the new transaction that continues the Sequence contains an updated remaining
byte count.

• Each transaction includes the identity of the initiator (bus number, device
number, and function number) and the transaction sequence (or “thread”) to
which it belongs (Tag).

• Additional information about transaction ordering and cacheability requirements.

4. Restricted wait state and disconnection rules optimized for more efficient use of the
bus and memory resources.

• Initiators are not permitted to insert wait states.

• Targets are not permitted to insert wait states after the initial data phase.

• Both initiators and targets are permitted to end a burst transaction only on
naturally aligned 128-byte boundaries. This encourages longer bursts and
enables more efficient use of cacheline-based resources such as the host bus and
main memory. Targets are also permitted to disconnect transactions after only a
single data phase in address ranges where longer transactions are not necessary.

5. Delayed Transactions in conventional PCI replaced by Split Transactions in PCI-X.
All transactions except memory write transactions must be completed immediately or
they must be completed using Split Transaction protocol. In Split Transaction
protocol, the target terminates a transaction by signaling Split Response, executes the
command, and initiates its own Split Completion transaction to send the data or a
completion message back to the original initiator.

1 This specification follows the precedent of PCI 2.2 by abbreviating clock frequency notation. For
example, 133 1/3 MHz (the actual maximum frequency for PCI-X devices) is written “133 MHz,”
66 2/3 MHz is written “66 MHz” and 33 1/3 MHz is written “33 MHz.” Actual clock frequencies are
specified in Section 9.4.1.

Revision 1.0b

14

6. A wider range of error recovery implementations for PCI-X devices that reduce
system intervention on data parity errors.

PCI-X requirements are defined in many cases to be the same or similar to their
corresponding conventional PCI requirements. This simplifies the task of converting
conventional designs to PCI-X and of making PCI-X devices that work in conventional
environments.

In most cases, this document does not repeat specifications that remain unchanged from
PCI 2.2, Bridge 1.1, PCI PM 1.1, and PCI HP 1.0. Any requirement not specified to be
different for PCI-X devices remains the same as specified in these other specifications.

The following PCI-X features are some of the features that are the same as conventional
PCI:

1. Devices have either a 32- or 64-bit data bus.

2. Address and data are multiplexed on the same bus.

3. Transactions have one or two address phases.

4. Transactions have one or more data phases.

5. Devices decode address and command and assert DEVSEL# to claim a transaction.

6. Add-in card mechanical specification.

7. Signal names and connector pin-out (except one new pin, PCIXCAP).

8. Power supply voltages.

9. Maximum power consumption for add-in cards.

10. Single clock signal for all devices and transactions. The bus changes state and data
transfers on the rising edge of the clock.

11. PCI hot-plug architecture and hot-insertion and hot-removal sequences.

The following PCI-X features have been kept similar to conventional PCI:

1. Signaling protocol on FRAME#, IRDY#, DEVSEL#, TRDY#, and STOP#.

2. Data phases complete each time IRDY# and TRDY# are both asserted. Some
additional target data-phase signaling is defined for PCI-X.

3. Transaction ordering and passing rules for bridges (Split Transactions in PCI-X
replace Delayed Transactions in conventional PCI).

4. Electrical signaling voltage levels are the same, except Vil(max) is slightly higher in

PCI-X mode to provide additional noise margin. PCI-X add-in cards are keyed for
3.3V or Universal signaling.

5. Device and add-in card electrical specification ranges are generally narrower for
PCI-X devices.

Revision 1.0b

15

1.1. Documentation Conventions

In addition to the documentation conventions established in PCI 2.2, the following
conventions are used in this document:

Capitalization Names of transaction commands and target termination methods are
presented with the first letter capitalized and the rest lower case, e.g.,
Memory Read Block, Memory Write Block, Retry, Target-Abort,
and Single Data Phase Disconnect.

As in PCI 2.2, register names and the names of fields and bits in
registers and attributes are presented with the first letter capitalized
and the rest lower case, e.g., PCI-X Status register, PCI-X Command
register, Byte Count field, Bus Number field, and No Snoop attribute
bit.

Some other terms are capitalized to distinguish their definition in the
context of this document from their common English meaning.
These terms are listed in Section 1.2.

Words not capitalized have their common English meaning. When
terms such as “memory write” or “memory read” appear completely
in lower case, they include all transactions of that type. For
example, transactions using the Memory Write, Memory Write
Block, and Alias to Memory Write Block commands are all included
by the phrase, “memory write transactions.”

Numbers and
number bases

Hexadecimal numbers are written with a lower case “h” suffix, e.g.,
FFFFh and 80h. Hexadecimal numbers larger than four digits are
represented with a space dividing each group of four digits, as in
1E FFFF FFFFh.

Binary numbers are written with a lower case “b” suffix, e.g., 1001b
and 10b. Binary numbers larger than four digits are represented
with a space dividing each group of four digits, as in 1000 0101
0010b.

All other numbers are decimal.

Buses As in PCI 2.2, collections of signals that are collectively driven and
received are assigned the same signal name with numbers in
brackets to indicate the bit or bits affected, e.g., AD[31::00],
C/BE[7::4]#, and AD[2].

Reference
information

Reference information is provided in various places to assist the
reader and does not represent a requirement of this document. Such
references are indicated by the abbreviation “(ref).” For example, in
some places a clock that is specified to have a minimum period of
15 ns also includes the reference information maximum clock
frequency of “66 MHz (ref).”

Requirements of other specifications also appear in various places
throughout this document and are marked as reference information.
Every effort has been made to guarantee that this information
accurately reflects the referenced document. However, in case of
discrepancy, the original document takes precedence.

Revision 1.0b

16

Device types As in conventional PCI, PCI-X devices are required to operate up to
a maximum frequency (down to a minimum clock period). The
system is permitted to operate the bus at a lower frequency to
compensate for additional bus loading. This document refers to the
type of the device as either conventional or PCI-X and the
appropriate maximum frequency.

Conventional PCI 33

Conventional PCI 66

PCI-X 66

PCI-X 133

In all cases, the actual operating clock frequency is between the
minimum and maximum specified for that device.

1.2. Terms and Abbreviations

The following terms and abbreviations are used throughout this specification:

address order Incrementing sequentially beginning with the starting address of the
Sequence. For example, Split Completions in the same Sequence (that
is, resulting from a single Split Request) must be returned in address
order.

allowable
disconnect
boundary
(ADB)

A naturally aligned 128-byte boundary. Initiators and targets are
permitted to disconnect burst transactions only on ADBs. (See
Section 2.2 for more information.)

ADB delimited
quantum
(ADQ)

A portion (or all) of a transaction or a buffer that fits between two
adjacent ADBs. For example, if a transaction starts between two
ADBs, crosses one ADB, and ends before reaching the next ADB, the
transaction includes two ADQs of data. Such a transaction fits in two
buffers inside a device that divides its buffers on ADBs.

application
bridge

A device that implements internal posting of memory write transactions
that the device must initiate on the PCI-X interface but uses a Type 00h
Configuration Space header and the Class Code of the application it
performs rather than that of a bridge. See Section 8.2.

attribute The 36-bit field contained on C/BE[3::0]# and AD[31::00] during the
attribute phase of a PCI-X transaction. Used for further definition of
the transaction.

attribute
phase

The clock after the address phase(s). The lower bus halves
(C/BE[3::0]# and AD[31::00]) contain the attributes. The upper bus
halves (C/BE[7::4]# and AD[63::32]) are reserved and driven high by
64-bit initiators.

Revision 1.0b

17

burst
transaction

A transaction using one of the following commands:

Memory Read Block
Memory Write Block
Memory Write
Alias to Memory Read Block
Alias to Memory Write Block
Split Completion

Burst transactions can be of any length, from 1 to 4096 bytes. (Note
that if the byte count is small enough, a burst transaction contains only
a single data phase.) They are permitted to be initiated both as 64-bit
and 32-bit transactions.

The C/BE# bus contains explicit byte enables for each data phase of
Memory Write transactions. For all other burst transactions, the
C/BE# bus is reserved and driven high during all data phases.

byte count The number of bytes to be included in a Sequence. It appears in the
attribute phase of all burst transactions and indicates the number of
bytes affected by the transaction. (Byte enables must also be asserted
for a byte to be affected by a Memory Write transaction. See
Section 2.6.1.)

completer The device addressed by a transaction (other than a Split Completion).

Completer
Attributes

Format of the attributes of all Split Completion transactions. Includes
information about the completer and the Sequence. See also Requester
Attributes.

Completer ID The combination of a completer’s bus number, device number, and
function number. All these numbers appear in the attribute phase of
every Split Completion and uniquely identify the completer of the
transaction. See also Requester ID.

In most cases, a PCI-X bridge forwards Split Completion transactions
from one interface to another without modifying the Completer ID. A
bridge from a bus other than PCI-X (including a PCI bus operating in
conventional mode) must create its own Completer ID when creating a
Split Completion transaction.

data phase Each clock in which the target signals some kind of data transfer or
terminates the transaction. Transactions terminated with Split
Response, Single Data Phase Disconnect, or Retry have a single data
phase. Clocks in which the target signals Wait State one or more times
and then signals something else are part of the same data phase.

Revision 1.0b

18

disconnection The termination of a burst transaction after some but not all of the byte
count has been satisfied. In other words, disconnection is the
termination of the transaction but not the termination of the Sequence
(see Section 2.1 for some exceptions). Targets are permitted to
disconnect any transaction after a single data phase by signaling Single
Data Phase Disconnect (see Section 2.11.2.1). Targets are also
permitted to disconnect on any ADB by signaling Disconnect at Next
ADB (see Section 2.11.2.2). Initiators are permitted to disconnect on
any ADB four or more data phases from the starting address by
deasserting FRAME# two clocks before the ADB (see
Section 2.11.1.1).

device A component of a PCI system that connects to a PCI bus. As defined
by PCI 2.2, a device can be a single function or a multifunction device.
All devices must be capable of responding as a target to some
transactions on the bus. Many devices are also capable of initiating
transactions on the bus. A PCI-X device also supports the requirements
of this document.

As in PCI 2.2, the term “device” is often used when describing
requirements that apply individually to all functions within the device.
Unless otherwise specified, requirements in the PCI-X definition for a
device apply to single function devices and to each function
individually of a multifunction device.

device
boundary

The first address of a device range or the first address beyond the end of
a device range. Address ranges for devices with Type 00h
Configuration Space headers are established with Base Address
registers, as described in PCI 2.2. Address ranges for devices with
Type 01h Configuration Space headers (bridges) are established with
Base Address, Memory Base, I/O Base, and Prefetchable Memory Base
registers, as described in Bridge 1.1.

A device boundary is always an ADB. (See Section 7.1.) To
“disconnect at a device boundary” means to disconnect a transaction in
such a way that the last address of the transaction corresponds to the
last address of the device. To “cross a device boundary” means that the
transaction includes one or more addresses of the devices on both sides
of the boundary.

drive When a device has acquired exclusive ownership of a bus through a
handshake with the bus arbiter or the initiator of a transaction, the
device is said to drive the bus by placing its output buffers in a low
impedance state to put the bits of the bus in the appropriate logic level.

DWORD Thirty-two bits of data on a naturally aligned four-byte boundary (i.e.,
the least significant two bits of the address are 00b).

Revision 1.0b

19

DWORD
transaction

A transaction using one of the following commands:

Interrupt Acknowledge
Special Cycle
I/O Read
I/O Write
Configuration Read
Configuration Write
Memory Read DWORD

DWORD transactions address no more than a single DWORD and are
permitted to be initiated only as 32-bit transactions (REQ64# must be
deasserted). During the attribute phase, the Requester Attributes
contain valid byte enables. During the data phase, the C/BE# bus is
reserved and driven high by the initiator.

ending
address

Last address included in the Sequence. For burst transactions, it is
calculated by adding the starting address and the byte count and
subtracting one and is permitted to be aligned to any byte. For
DWORD transactions, it is the last byte (AD[1::0] = 11b) of the
DWORD addressed by the starting address.

float When a device has finished driving a bus or a control signal and it
places the output buffers in the high-impedance state, the device is said
to float the bus or the control signal.

Immediate
Transaction

A transaction that terminates in a way that includes transferring data or
that terminates with an error that completes the Sequence. Transactions
in which the target signals Data Transfer, Single Data Phase
Disconnect, Disconnect at Next ADB, Master-Abort, or Target-Abort
are Immediate Transactions. Transactions that terminate with Retry or
Split Response are not Immediate Transactions.

initiator A device that initiates a transaction by requesting the bus, asserting
FRAME#, and driving the command and address. A bridge forwarding
a transaction is an initiator on the destination bus.

PCI-X bridge Unless otherwise specified, a bridge between two buses that are capable
of operating in PCI-X mode. If a conventional PCI device is connected
to a general-purpose PCI-X bridge interface, that interface must operate
in conventional mode.

PCI-X
initialization
pattern

A combination of bus control signals that is used to place PCI-X
devices in PCI-X mode at the rising edge of RST#. Also indicates the
range of frequency of the clock. See Section 6.2.

QWORD Sixty-four bits of data on a naturally aligned eight-byte boundary (i.e.,
the least significant three bits of the address are 000b).

read side
effects

Changes to the state of a device that occur if a location within the
device is read; for example, the clearing of a status bit or advancing to
the next data value in a sequential buffer.

Revision 1.0b

20

requester Initiator that first introduces a transaction into the PCI-X domain. If the
completer or a bridge terminates the transaction with Split Response,
the requester becomes the target of the subsequent Split Completion.

A PCI-X bridge is required to terminate all transactions that cross it
(except for memory write transactions) with Split Response. The
bridge forwards the request toward the completer and forwards the
completion in the opposite direction. A bridge from some domain other
than PCI-X (including conventional PCI) becomes the requester for the
transaction in the PCI-X domain. If the device that originated the
request in the other domain is referred to as a “requester,” the term must
include a modifier such as “conventional requester” to avoid confusion
with the bridge.

Requester
Attributes

Attributes of all transactions except Split Completion transactions.
Includes information about the requester and the Sequence. There are
different Requester Attribute formats for burst, DWORD, and Type 0
configuration transactions. See also Completer Attributes.

Requester ID The combination of a requester’s bus number, device number, and
function number. All these numbers appear in the attribute phase of
every transaction except Split Completions. They appear in the address
phase of a Split Completion. The Requester ID uniquely identifies the
requester of the transaction. See also Completer ID.

In most cases, a PCI-X bridge forwards transactions from one interface
to another without modifying the Requester ID. A bridge from a bus
other than PCI-X (including a PCI bus operating in conventional mode)
must use its own Requester ID when forwarding a transaction to a bus
operating in PCI-X mode.

Sequence One or more transactions associated with carrying out a single logical
transfer by a requester. See Section 2.1 for additional details.

Sequence ID The combination of the Requester ID (requester bus number, device
number, and function number) and Tag attributes. This combination
uniquely identifies transactions that are part of the same Sequence and
is used in buffer-management algorithms and some ordering rules.

Sequence size The number of ADQs required for the data of the Sequence. For
example, the size of a DWORD Sequence is one ADQ. The size of a
Sequence that starts between two ADBs and ends before reaching the
third ADB is two ADQs.

Sequence
termination

The termination of a transaction in such a way that the Sequence does
not resume with additional transactions.

source bridge The bridge that creates a bus segment capable of PCI-X operation in a
system hierarchy. The source bridge is required to initiate Type 0
configuration transactions on that bus segment. (Other devices
optionally initiate Type 0 configuration transactions.) A host bridge is
the source bridge for the PCI bus it creates. A PCI-X bridge is the
source bridge for its secondary bus.

Revision 1.0b

21

Split
Completion

When used in the context of the bus protocol, this term refers to a
transaction using the Split Completion command. It is used by the
completer to send the requested data (for read transactions completed
without error) or a completion message back to the requester.

When used in the context of transaction ordering and the transaction
queues inside the requester, completer, and bridges, the term refers to a
queue entry corresponding to a Split Completion transaction on the bus.

Split
Completion
address

Information driven by the completer or a bridge on the AD bus during
the address phase of a Split Completion transaction. The Split
Completion address includes the Requester ID and is used to route the
Split Completion to the requester.

Split
Completion
Message

In the context of bus transactions, a Split Completion Message is a Split
Completion transaction that notifies the requester that a request (either
read or write) encountered an error, or that a write request completed
without an error.

In the context of the Split Completion address, the term refers to the
attribute bit that indicates the Split Completion is a message rather than
data for a read request.

Split Request When used in the context of the bus protocol, this term refers to a
transaction terminated with Split Response. When used in the context
of transaction ordering and the transaction queues inside the requester,
completer, and bridges, the term refers to a queue entry corresponding
to a Split Request transaction on the bus. When the completer executes
the Split Request, it becomes a Split Completion.

Split Response Protocol for terminating a transaction, whereby the target indicates that
it will complete the transaction as a Split Transaction. The target may
optionally terminate any transaction except a memory write transaction
with Split Response.

Split
Transaction

A single logical transfer containing an initial transaction (the Split
Request) that the target (the completer or a bridge) terminates with Split
Response, followed by one or more transactions (the Split
Completions) initiated by the completer (or bridge) to send the read
data (if a read) or a completion message back to the requester.

starting
address

Address indicated in the address phase of all transactions except Split
Completions, Interrupt Acknowledges, and Special Cycles. This is the
first byte of the transaction. The starting address of all transactions
except configuration transactions is permitted to be aligned to any byte
(i.e., it uses the full address bus). The starting address of configuration
transactions must be aligned to a DWORD boundary (i.e., AD[1::0]
must be 0).

Split Completion transactions use only a partial starting address as
described in Section 2.10.3. As in conventional PCI, Interrupt
Acknowledge and Special Cycle transactions have no address.

Revision 1.0b

22

Tag A 5-bit number assigned by the initiator of a Sequence to distinguish it
from other Sequences. It appears in the attribute field and is part of the
Sequence ID.

An initiator must not reuse a Tag for a new Sequence until the original
Sequence is complete (i.e., byte count satisfied, error condition
encountered, etc.). (See Section 2.1 for more details.)

target A device that responds to bus transactions. A bridge forwarding a
transaction is the target on the originating bus.

target data
phase
signaling

The target signals one of the following on each data-phase clock:

Split Response
Target-Abort
Single Data Phase Disconnect
Wait State
Data Transfer
Retry
Disconnect at Next ADB

target
response
phase

One or more clocks after the attribute phase until the target claims the
transaction by asserting DEVSEL# (also used but not named in
conventional PCI).

transaction A combination of address, attribute, target response, data, and bus turn-
around phases associated with a single assertion of FRAME#.

transaction
termination

The protocol for ending a transaction either by the initiator or the target.

Revision 1.0b

23

1.3. Figure Legend

The following conventions for the state of a signal at clock N are used in timing diagrams
throughout this document.

driven high signal

low signal state being driven high before being floated

reserved for signal or bus turn-around. Neither ow ner drives the
signal or bus on this clock. The tim e at w hich the previous ow ner
stops driving and the next ow ner starts driving is show n by the
state of the signal or bus in previous and subsequent clocks,
respectively.

driven low signal

driven signal to a specified state

�� driven signal to a valid but unspecified state

system clock rising edge triggered

floated signal, state unknow n

floated signal, high state m aintained by system pull-up resistors��
�� driven signal to a valid but unspecified state or floated

NN-1 N+1

1.4. Transaction Comparison Between PCI-X and Conventional
PCI

The following illustrations compare a typical conventional PCI write transaction with a
typical PCI-X write transaction. Both illustrations depict a write transaction with initiator
termination, identical device selection timing and wait states, and six data phases.

Figure 1-1 shows a typical conventional PCI write transaction with six data phases. The
initiator and target insert minimum wait states for DEVSEL# timing “medium,” and the
transaction completes in nine clocks including the bus turn-around.

Revision 1.0b

24

PCI_CLK

1 2 3 4 5 6 7 8 9 10 11

Data
Phase

Data
Phase

Data
Phase

Data
Phase

Data
Phase

Data
Phase

Address Phase

Turn Around

12

D
ata

T
ran

sfer

D
ata

T
ran

sfer

D
ata

T
ran

sfer

D
ata

T
ran

sfer

D
ata

T
ran

sfer

D
ata

T
ran

sfer

Bus Transaction

Initiator
Termination

ADDRESSAD DATA-0 DATA-1 DATA-2 DATA-3 DATA-4 DATA-5

BUS CM DC/BE# BE#'s-0 BE#'s-1 BE#'s-4BE#'s-3BE#'s-2 BE#'s-5

FRAM E#

IRDY#

TRDY#

DEVSEL#

Figure 1-1: Typical Conventional PCI Write Transaction

Table 1-1 lists the phase definitions for conventional PCI bus transactions as shown in
Figure 1-1.

Table 1-1: Conventional PCI Transaction Phase Definitions

Conventional PCI Phases Description
Address Phase One clock for single address cycle, two clocks for dual

address cycle.
Data Phase The clocks after the address phase in which the target

inserts wait states, transfers data, or signals the end of
the transaction.

Initiator Termination Initiator signals the end of the transaction on the last data
phase.

Turn-Around Idle clock for changing from one signal driver to another.

Revision 1.0b

25

Figure 1-2 shows a typical PCI-X write transaction with six data phases. The initiator
and target insert minimum wait states for DEVSEL# timing A, and the transaction
completes in ten clocks including the bus turn-around.

PCI_CLK

1 2 3 4 5 6 7 8 9 10 11

Data
Phase

Data
Phase

Data
Phase

Data
Phase

Data
Phase

Data
Phase

Address Phase

T urn Around

Attribute Phase

T arget Response Phase

12

D
ata

T
ran

sfer

D
ata

T
ran

sfer

D
ata

T
ran

sfer

D
ata

T
ran

sfer

D
ata

T
ran

sfer

D
ata

T
ran

sfer

Bus T ransaction

In itiator
T erm ination

DEVSEL#

TRDY#

IRDY#

FRAM E#

BUS C M DC/BE# BE #'s-0ATTR BE #'s-1 BE #'s-2 BE #'s-3 BE #'s-4 BE #'s-5

ADDRE SSAD

��
DATA-0 DATA-1 DATA-2 DATA-3 DATA-4ATTR DATA-5

Figure 1-2: Typical PCI-X Write Transaction

The two previous figures illustrate the similarities between conventional PCI and PCI-X.
The protocol differences have been kept to a minimum to lessen the effect of the change
on designs and on tools for design and debug.

The figures also show the effect of PCI-X protocol on the length of the transaction. Both
transactions show the target responding by asserting DEVSEL# two clocks after
FRAME# and moving a total of six data phases. The transaction takes nine clocks for
conventional PCI and ten clocks for PCI-X.

Revision 1.0b

26

Table 1-2 lists the transaction phases of PCI -X as shown in Figure 1-2.

Table 1-2: PCI-X Transaction Phase Definitions

PCI-X Transaction Phases Description
Address Phase One clock for single address cycle, two clocks for dual

address cycle. (See Section 2.12.1 for more information
about dual address cycles.)

Attribute Phase One clock. This phase provides further information about
the transaction.

Target Response Phase One or more clocks after the attribute phase until the
target claims the transaction by asserting DEVSEL# (also
used but not named in conventional PCI).

Data Phase The clocks after the target response phase in which the
target transfers data or signals the end of the transaction.

Initiator Termination Initiator signals the end of the transaction one clock
before the last data phase.

Turn-Around Idle clock for changing from one signal driver to another.

1.5. Burst and DWORD Transactions

Like conventional PCI, PCI-X supports transactions with one or more data phases.
Transactions using the memory commands (except Memory Read DWORD) are called
burst transactions and are permitted to have any number of data phases (from one to the
maximum necessary to satisfy the byte count). The other PCI-X commands are limited to
a single data phase (an aligned DWORD or less) and are called DWORD transactions.
DWORD transactions are limited to a 32-bit transaction width (REQ64# must be
deasserted).

Table 1-3 compares burst and DWORD transactions.

Revision 1.0b

27

Table 1-3: Comparison of Burst Transactions and DWORD Transactions

Burst Transactions DWORD Transactions
Commands:
Memory Read Block
Memory Write Block
Memory Write
Alias to Memory Read Block
Alias to Memory Write Block
Split Completion

Commands:
Interrupt Acknowledge
Special Cycle
I/O Read
I/O Write
Configuration Read
Configuration Write
Memory Read DWORD

64- or 32-bit data transfers. 32-bit data transfers only.
Starting address specified on AD bus
down to a byte address (includes all AD
bits).

Starting address specified on AD bus
down to a byte address (includes all AD
bits), except for configuration
transactions, which are DWORD aligned
(AD[1::0] indicate configuration
transaction type).

Supports one or more data phases and
always in address order.

Supports only single data phase.

During the data phases, the C/BE# bus
is reserved and driven high by the
initiator for all transactions except
Memory Write.

The C/BE# bus contains valid byte
enables for Memory Write transactions.
Any byte enable pattern is permitted
(between the starting and ending
address, inclusive), including no byte
enables asserted.

During the attribute phase, the Requester
Attributes contain valid byte enables.
Any byte enable pattern is permitted,
including no byte enables asserted.

During the data phase, the C/BE# bus is
reserved and driven high by the initiator.

1.6. Wait States

PCI-X initiators are not permitted to insert wait states on any data phase. PCI-X targets
are permitted to insert wait states on the initial data phase only. No wait states are
allowed on subsequent data phases. Target initial wait states for memory write and Split
Completion transactions must come in pairs for transactions that successfully transfer
data. See Section 2.9 for details.

1.7. Split Transactions

Split Transactions in PCI-X replace Delayed Transactions in conventional PCI. All
transactions except memory write transactions are permitted to be executed as Split
Transactions. If a target cannot complete a transaction (other than a memory write
transaction or a Split Completion) within the target initial latency limit, the target must
complete that transaction as a Split Transaction. (See Section 2.13 for exceptions when
the target is permitted to signal Retry.) If the target meets the target initial latency limits,
the target optionally completes the transaction immediately (not as a Split Transaction).

A Split Transaction starts when an initiator (called the requester) initiates a transaction
other than a memory write or Split Completion (called the Split Request). If a target
(called the completer) chooses to complete the transaction as a Split Transaction, it
signals Split Response termination by using the signaling handshake shown in

Revision 1.0b

28

Section 2.11.2.4. The completer then executes the transaction. The completer then
asserts its REQ# signal to request the bus. When the arbiter asserts GNT# to the
completer, the completer initiates a Split Completion transaction to send read data (at
least up to an ADB) or a completion message to the requester. Notice that for a Split
Completion transaction, the requester and the completer switch roles. The completer
becomes the initiator of the Split Completion transaction and the requester becomes the
target.

1.8. Bus Width

The following PCI-X bus width requirements are the same as conventional PCI:

1. Devices are permitted to support either a 64-bit interface or a 32-bit interface.

2. Addresses greater than 4 GB require a dual address cycle regardless of the width of
the devices.

3. Data transfer width is negotiated for each transaction. The initiator and target are
permitted to be either size and the transaction proceeds at the width of the smaller.

4. The state of REQ64# at the rising edge of RST# indicates the width of the bus.

The following PCI-X requirements are different from conventional PCI:

1. All devices that initiate memory transactions must be capable of generating 64-bit
addresses.

2. Each device includes a configuration status bit that indicates the width of that
device’s interface.

1.9. Compatibility and System Initialization

This document defines two frequency ranges of PCI-X devices, PCI-X 66 and
PCI-X 133. Both kinds of devices have identical requirements except for electrical
differences specified in Section 9, such as the minimum clock period (maximum clock
frequency), and the add-in card identification requirements. PCI-X 66 devices operate in
PCI-X mode with clock frequencies from 50 MHz to 66 MHz. PCI-X 133 devices
operate in PCI-X mode with clock frequencies from 50 MHz to 133 MHz. If only
PCI-X 133 devices are installed on a bus, the bus operates in PCI-X mode and the clock
operates up to 133 MHz. If all devices on the bus are PCI-X 133 and PCI-X 66, the bus
operates in PCI-X mode and the clock operates up to 66 MHz.

All PCI-X devices and systems also support conventional PCI 33 mode. They optionally
support conventional PCI 66 mode.

PCI-X devices initialize in conventional or PCI-X mode depending on the state of a
combination of bus control signals (called the PCI-X initialization pattern and shown in
Table 6-2) at the rising edge of RST#, as described in Section 6.2. One pattern causes
the device to enter conventional mode. Other patterns cause it to enter PCI-X mode.

The source bridge for each bus drives the PCI-X initialization pattern during RST#. The
host bridge that begins a PCI bus hierarchy and a PCI-X bridge that extends it have
slightly different requirements that are presented separately in Section 6.2.3.1 and
Section 8.9 respectively.

The PCI Hot-Plug Controller must provide the PCI-X initialization pattern on the bus
during a hot-insertion event as described in PCI HP 1.0. Coordination between the PCI

Revision 1.0b

29

Hot-Plug Controller and the source bridge for asserting the pattern is permitted, but the
details of such an implementation are beyond the scope of this specification.

1.10. Summary of Protocol Rules

Protocol rules are divided into the following categories:

• General bus rules

• Initiator rules

• Target rules

• Bus arbitration rules

• Configuration transaction rules

• Parity error rules

• Bus width rules

• Split Transaction rules

The following sections summarize the protocol rules for PCI-X transactions according to
these categories. Later subsections of this document describe details of these rules.

1.10.1. General Bus Rules

The following rules generally apply to all transactions:

1. As in conventional PCI, the first clock in which FRAME# is asserted is the address
phase. In the address phase, the AD bus contains the starting address (except Split
Completion, Interrupt Acknowledge, or Special Cycle) and the C/BE# bus contains
the command. (See Section 2.12.1 for dual address cycles.)

2. Except as listed below, the starting address of all transactions is permitted to be
aligned to any byte. As in conventional PCI, the start ing address of Configuration
Read and Configuration Write transactions is aligned to a DWORD boundary. Split
Completion transactions use only a partial starting address as described in
Section 2.10.3. As in conventional PCI, Interrupt Acknowledge and Special Cycle
transactions have no address.

3. The attribute phase follows the address phase(s). C/BE[3::0]# and AD[31::00]
contain the attributes. C/BE[7::4]# and AD[63::32] are reserved and driven high by
64-bit initiators. The attributes include additional information about the transaction.

4. The C/BE# bus is reserved (driven high) the clock after the attribute phase.

5. Burst transactions include the byte count in the attributes. The byte count indicates
the number of bytes between the first byte of the transaction and the last byte of the
Sequence, inclusive.

6. DWORD transactions do not use a byte count.

7. The target response phase is one or more clocks after the attribute phase and ends
when the target asserts DEVSEL#.

8. As in conventional PCI, there are no data phases if the target does not assert
DEVSEL#, resulting in a Master-Abort. All other transactions have one or more
data phases following the target response phase.

Revision 1.0b

30

9. As in conventional PCI, transactions using the I/O Read, I/O Write, Configuration
Read, Configuration Write, Interrupt Acknowledge, and Special Cycle commands are
initiated only as 32-bit transactions (REQ64# deasserted). Memory Read DWORD
commands also have the same restriction in PCI-X mode. In PCI-X, the length of all
these transactions is limited to one data phase. Transactions using the Memory
Write, Memory Read Block, Memory Write Block, Alias to Memory Read Block,
Alias to Memory Write Block, and Split Completion are permitted by both 64- and
32-bit initiators and are permitted to have one or more data phases, up to the
maximum required to satisfy the byte count.

10. As in conventional PCI, data is transferred on any clock in which both IRDY# and
TRDY# are asserted.

11. The following rules apply to the use of byte enables:

a. Byte enables are included in the Requester Attributes for all DWORD
transactions. Byte enables are included on the C/BE# bus during the data phases
of all Memory Write burst transactions. Byte enables further qualify the bytes
affected by the transaction. Only bytes for which the byte enable is asserted are
affected by the transaction.

b. The C/BE# bus is reserved and driven high during the single data phase of all
DWORD transactions and throughout all data phases of all burst transactions
except Memory Write.

c. DWORD transactions are permitted to have any combination of byte enables,
including no byte enables asserted. See Section 2.3 for restrictions on starting
address and byte enables.

d. Memory Write transactions are permitted to have any combination of byte
enables between the starting and ending addresses, inclusive. Byte enables must
be deasserted for bytes before the starting address and after the ending address (if
those addresses are not aligned to the width of the bus). See Section 2.12.3 for
exceptions and additional requirements when a 64-bit initiator addresses a 32-bit
target.

e. The byte count of Memory Write transactions is not adjusted for bytes whose
byte enables are deasserted within the transaction. In other words, the byte count
is the same whether all or none of the byte enables were asserted.

12. Device state machines must not be confused by target control signals (DEVSEL#,
TRDY#, and STOP#) asserting while the bus is idle (FRAME# and IRDY# both
deasserted). (In some systems, the PCI-X initialization pattern appears on the bus
when another device is being hot-inserted onto the bus. See Section 6.2.3.2.)

13. Like conventional PCI, no device is permitted to drive and receive a bus signal at the
same time. (See Section 3.1.)

1.10.2. Initiator Rules

The following rules control the way a device initiates a transaction:

1. As in conventional PCI, a PCI-X initiator begins a transaction by asserting
FRAME#. (See Section 2.7.2.1 for differences for configuration transactions.)

2. In most cases, the initiator asserts FRAME# within two clocks after GNT# is
asserted and the bus is idle. If the transaction uses a configuration command, the
initiator must assert FRAME# six clocks after GNT# is asserted and the bus is idle.

Revision 1.0b

31

3. The initiator asserts and deasserts control signals as follows:

a. The initiator asserts FRAME# to signal the start of the transaction. It deasserts
FRAME# on the later of the following two conditions:

1) one clock before the last data phase

2) two clocks after the target asserts TRDY# (or terminates the transaction in
some other way as described in Section 2.11.2)

The two conditions for the deassertion of FRAME# cover two cases discussed in
Section 2.11. The first case 1) is if the transaction has four or more data phases.
The second case 2) is if the transaction has less than four data phases.

b. Initiator wait states are not permitted. The initiator asserts IRDY# two clocks
after the attribute phase. It deasserts it on the later of the following two
conditions:

1) one clock after the last data phase

2) two clocks after the target asserts TRDY# (or terminates the transaction in
some other way as described in Section 2.11.2)

The two conditions for the deassertion of IRDY# cover two cases discussed in
Section 2.11. The first case 1) is if the transaction has three or more data phases.
The second case 2) is if the transaction has less than three data phases.

4. If no target asserts DEVSEL# on or before the Subtractive decode time, the initiator
ends the transaction as a Master-Abort.

5. For write and Split Completion transactions, the initiator must drive data on the AD
bus two clocks after the attribute phase. If the transaction is a burst with more than
one data phase, the initiator advances to the second data value two clocks after the
target asserts DEVSEL#, in anticipation of the target asserting TRDY#. If the target
also inserts wait states, the initiator must toggle between its first and second data
values until the target asserts TRDY# (or terminates the transaction). See
Section 2.12.3 for requirements for a 64-bit initiator writing to 32-bit targets.

6. The initiator is required to terminate the transaction when the byte count is satisfied.

7. The initiator is permitted to disconnect a burst transaction (before the byte count is
satisfied) only on an ADB. If the initiator intends to disconnect the transaction on the
first ADB, and the first ADB is less than four data phases from the starting address,
the initiator must adjust the byte count to terminate the transaction on that ADB.

8. If a burst transaction would otherwise cross the next ADB, and the target signals
Disconnect at Next ADB four data phases before an ADB or on the first data phase,
the initiator deasserts FRAME# two clocks later and disconnects the transaction on
the ADB. The initiator treats Disconnect at Next ADB the same as Data Transfer in
all other data phases.

9. If the transaction has four or more data phases, the initiator floats the C/BE# bus on
the clock it deasserts IRDY#. If the transaction has less than four data phases, the
initiator floats the C/BE# bus either on the clock it deasserts IRDY# or one clock
after that.

10. If the transaction is a write with four or more data phases, the initiator floats the AD
bus on the clock it deasserts IRDY#. If the transaction is a write with less than four
data phases, the initiator floats the AD bus either on the clock it deasserts IRDY# or
one clock after that.

Revision 1.0b

32

11. The default Latency Timer value for initiators in PCI-X mode is 64. Initiators must
disconnect the current transaction on the next ADB if the Latency Timer expires and
GNT# is deasserted.

1.10.3. Target Rules

The following rules apply to the way a target responds to a transaction:

1. Memory address ranges (including those assigned through Base Address registers)
for all devices must be no smaller than 128 bytes. System configuration software
assigns the memory range of each function of each device (that requests Memory
Space) to different ranges aligned to ADBs. No two device-functions respond to
addresses between the same two adjacent ADBs.

2. The target claims the transaction by asserting DEVSEL# and leaving TRDY# and
STOP# deasserted, using decodes A, B, C, or Subtractive, as given in Table 2-8.

3. After a target asserts DEVSEL#, it must complete the transaction with one or more
data phases by signaling one or more of the following: Split Response, Target-Abort,
Single Data Phase Disconnect, Wait State, Data Transfer, Retry, or Disconnect at
Next ADB. See Table 2-16.

4. The target is not permitted to signal Wait State after the first data phase. If the target
signals Split Response, Target-Abort, or Retry, the target must do so within eight
clocks of the assertion of FRAME#. If the target signals Single Data Phase
Disconnect, Data Transfer, or Disconnect at Next ADB, the target must do so within
16 clocks of the assertion of FRAME#. All PCI-X targets (including the host bridge)
are subject to the same target initial latency limits.

5. If a PCI-X target signals Data Transfer (with or without preceding wait states), the
target is limited to disconnecting the transaction only on an ADB (until the byte
count is satisfied). To disconnect the transaction on an ADB, the target signals
Disconnect at Next ADB on any data phase. Once the target has signaled Disconnect
at Next ADB, it must continue to do so until the end of the transaction.

If the target signals Disconnect at Next ADB four or more clocks before an ADB, the
initiator disconnects the transaction on that ADB. If the transaction starting address
is less than four data phases from an ADB and the target signals Disconnect at Next
ADB on the first data phase (with or without preceding wait states), the transaction
ends on that ADB. (See Section 2.11.2.2.)

6. The target is permitted to signal Single Data Phase Disconnect only on the first data
phase (with or without preceding wait states). It is permitted to do so both on burst
transactions (even if the byte count is small enough to limit the transaction to a single
data phase) and DWORD transactions (which are always a single data phase). (See
Section 2.11.2.1.)

7. The target is permitted to signal Target-Abort on any data phase regardless of its
relationship to an ADB.

8. The target deasserts DEVSEL#, STOP#, and TRDY# one clock after the last data
phase (if they are not already deasserted) and floats them one clock after that.

9. If the transaction is a read, the target floats the AD bus on the clock after the last data
phase, regardless of the number of data phases in the transaction or the type of
termination. That is, the target floats the AD bus on the clock it deasserts
DEVSEL#, STOP#, and/or TRDY# after signaling the last Data Transfer or target
termination.

Revision 1.0b

33

1.10.4. Bus Arbitration Rules

The following protocol rules apply to bus arbitration:

1. As in conventional PCI, the arbitration algorithm is not specified. The arbiter is
required to be fair to all devices (see Section 4.1). If a device signals Split Response,
arbitration within that device must fairly allow the initiation of the Split Completion
(see Section 4.1.1).

2. All REQ# and GNT# signals are registered by the arbiter as well as by initiators.
That is, they are clocked directly into and out of flip-flops at the arbiter and device
interfaces.

3. An initiator is permitted to assert and deassert REQ# on any clock. Unlike
conventional PCI, there is no requirement to deassert REQ# after a target termination
(STOP# asserted). (The arbiter is assumed to monitor bus transactions to determine
when a transaction has been target terminated if the arbiter uses this information in its
arbitration algorithm.)

4. An initiator is permitted to deassert REQ# on any clock independent of whether
GNT# is asserted. An initiator is permitted to deassert REQ# without initiating a
transaction after GNT# is asserted.

5. If all the GNT# signals are deasserted, the arbiter is permitted to assert any GNT# on
any clock. After the arbiter asserts GNT#, the arbiter must keep it asserted for a
minimum of five clocks while the bus is idle, or until the initiator asserts FRAME#
or deasserts REQ#. (This provides the opportunities for all devices to execute
configuration transactions.)

6. If only one REQ# is asserted, it is recommended that the arbiter keep GNT# asserted
to that device.

7. If the arbiter deasserts GNT# to one device, it must wait until the next clock to assert
GNT# to another device.

8. An initiator is permitted to start a new transaction (drive the AD bus, etc.) on any
clock N in which the initiator’s GNT# was asserted on clock N-2, and either the bus
was idle (FRAME# and IRDY# were both deasserted) on clock N-2 or FRAME#
was deasserted and IRDY# was asserted on clock N-3 (see Section 4.1.1). An
initiator is permitted to start a new transaction on clock N even if GNT# is deasserted
on clock N-1.

9. All fast back-to-back transactions as defined in PCI 2.2 are not permitted in PCI-X
mode.

10. In PCI hot-plug systems, the arbiter must coordinate with the Hot-Plug Controller to
prevent hot-plug operations from interfering with other bus transactions. See
Section 4.3.

1.10.5. Configuration Transaction Rules

The following protocol rules apply to configuration transactions:

1. PCI-X initiators must drive the address for four clocks before asserting FRAME# for
configuration transactions when in PCI-X mode.

2. In addition to the information required in conventional PCI for a Type 0
configuration transaction, in PCI-X the transaction must include the target device

Revision 1.0b

34

number in AD[15::11] of the address phase. (See Section 2.7.2.2.) The target
device bus number is provided in AD[7::0] of the attribute phase. The target of a
Type 0 Configuration Write transaction stores its device number and bus number in
its internal registers.

3. Software is required to write to the Configuration Space of every device on a bridge’s
secondary bus after changing that bridge’s secondary bus number. This occurs as
part of the device enumeration process.

4. Type 1 configuration transactions flow through the bus hierarchy the same as in
conventional PCI.

1.10.6. Parity Error Rules

The following rules apply to parity error conditions:

1. If a device receiving data (i.e., the target of a write or Split Completion and the
initiator of a read) detects a data parity error, it must assert PERR# (if enabled) on
the second clock after PAR64 and PAR are driven (one clock later than
conventional PCI).

2. During read transactions, the target drives PAR64 (if responding as a 64-bit device)
and PAR on clock N+1 for the read data it drives on clock N and the byte enables
driven by the initiator on clock N-1. During write transactions, the initiator drives
PAR64 (if initiating as a 64-bit device) and PAR on clock N+1 for the write data
and the byte enables it drives on clock N.

3. All PCI-X devices are required to service data parity error conditions for their
transactions. See Section 5.4.1.

4. If a device detects a parity error on an attribute phase, the device asserts SERR# (if
enabled), independent of whether the device decodes its address during the address
phase.

5. For Split Transactions, the requester sets the Master Data Parity Error bit in the
Status register for data parity errors on either the Split Request or the Split
Completion.

6. If data parity error recovery is disabled, the device asserts SERR# when a data parity
error occurs (see Section 5.4.1).

7. Other requirements for asserting SERR# and setting status bits for address-phase and
data-phase errors are the same as for conventional PCI.

1.10.7. Bus Width Rules

The following rules apply to the width of the transaction:

1. As in conventional PCI, PCI-X devices are permitted to implement either a 64-bit or
a 32-bit interface.

2. The width of the address is independent of the width of the data transfer.

3. All devices that initiate memory transactions must be capable of generating 64-bit
memory addresses.

4. If a device requests a memory range through a Base Address register, that Base
Address register must be 64-bits wide.

Revision 1.0b

35

5. If an address is greater than 4 GB, all initiators (including 64-bit devices) generate a
dual address cycle.

6. The attribute phase is always a single clock long for both 64-bit and 32-bit initiators.

7. Only burst transactions (memory commands other than Memory Read DWORD) use
64-bit data transfers. (This maximizes similarity with conventional PCI, in which
only memory transactions use 64-bit data transfers.) The width of each transaction is
determined with a handshake protocol on REQ64# and ACK64# that is similar to
conventional PCI.

1.10.8. Split Transaction Rules

The following rules apply to Split Transactions:

1. Any transaction that is terminated with Split Response results in one or more Split
Completion transactions.

2. Split Completions contain either read data or a Split Completion Message but not
both.

3. If the completer returns read data, the Completer must return all the data (the full
byte count) unless an error occurs. The read data is delivered in multiple Split
Completion transactions if either the initiator or the target disconnects it at ADBs.
The initiator (completer) is also permitted to adjust the byte count of the Split
Completion to terminate it on the first ADB. Each time the Split Completion
resumes after a disconnection, the initiator adjusts the byte count (and starting
address) to indicate the number of bytes remaining in the Sequence.

4. The requester must accept all data phases of a Split Completion. The requester must
terminate a Split Completion with Data Transfer or Target-Abort. (Initial wait states
are permitted. See Section 2.10.5 for restrictions on signaling Target-Abort.) The
requester must never terminate a Split Completion transaction with Split Response,
Single Data Phase Disconnect, Retry, or Disconnect at Next ADB. A PCI-X bridge
forwarding a Split Completion from one PCI bus to another (when both are operating
in PCI-X mode) is permitted to disconnect the Split Completion or terminate it with
Retry under certain conditions (see Section 8.4.5).

5. If the request is a write transaction, or if the completer encounters an error while
executing the request, the completer sends a Split Completion Message to the
requester. Although Split Completion transactions are considered burst transactions
(i.e., they include the byte count), a Split Completion Message is always a single data
phase. The Split Completion Message includes not only an indication of how the
transaction completed, but if an error occurred during a read operation, the message
includes an indication of the length of the Sequence that remains unsent. Intervening
bridges optionally use this information to manage their internal buffers.

1.11. PCI-X Transaction Flow

The following two figures illustrate how transactions flow through a PCI-X system.
Figure 1-3 illustrates transaction flow from a requester directly to a completer (no
intervening bridge). Figure 1-4 illustrates transaction flow across a bridge.

As shown in Figure 1-3, transactions start at the requester’s initiator interface. The
completer’s target interface terminates the transaction in one of several ways. If the
completer signals Split Response, the completer’s initiator interface initiates one or more
Split Completion transactions addressing the requester’s target interface.

Revision 1.0b

36

A bridge between the requester and completer allows the transactions on the requester’s
side and the completer’s side to execute independently on their respective buses.
Figure 1-4 shows transactions starting at the requester’s initiator interface as before and
flowing upstream across a bridge to a completer on the primary bus. The bridge’s
secondary target interface signals termination of the transaction the same as the completer
did in the previous example. (See Section 8.4 for cases in which the bridge must respond
with Split Response.) The bridge’s primary initiator interface forwards the transaction.
Depending upon the response from the completer, the bridge either creates a Split
Completion transaction or simply reserves buffer space for a Split Completion from the
completer. If the completer creates the Split Completion, its initiator interface returns it
to the bridge’s primary target interface. When the bridge has the Split Completion (either
it created it or received it from the completer), the bridge’s secondary initiator interface
initiates the Split Completion addressing the requester’s target interface.

Revision 1.0b

37

S
p

lit
C

o
m

p
le

ti
o

n
In

it
ia

to
r

I/O C
F

G
In

t.
A

ck
.

M
em

R
ea

d

S
p

lit
R

es
p

o
n

se
I/O

,
C

F
G

,
In

t.
A

ck
,

M
em

R
ea

d

Im
m

ed
ia

te
R

es
p

o
n

se
P

os
te

d
M

em
or

y
W

rit
es

,
I/O

,
C

F
G

,
In

t.
A

ck
,

M
em

R
ea

d

R
et

ry
R

es
p

o
n

se
(T

ra
ns

ac
tio

n
R

es
ch

ed
ul

ed
)

E
rr

or
T

er
m

in
at

io
n

(S
eq

ue
nc

e
E

nd
s)

C
o

m
p

le
te

r
(e

.g
.H

o
st

B
ri

d
g

e)

In
it

ia
to

r
In

te
rf

ac
e

T
ar

g
et

In
te

rf
ac

e
In

it
ia

to
r

In
te

rf
ac

e

T
ar

g
et

In
te

rf
ac

e

S
eq

u
en

ce
In

it
ia

to
r

I/O
,

C
F

G
,

In
t.

A
ck

.
M

em
or

y,
S

pe
ci

al
C

yc
,

S
eq

u
en

ce
R

eq
u

es
te

r
I/O C
F

G
In

t.
A

ck
.

M
em

R
ea

d

R
eq

u
es

te
r

(e
.g

.A
d

ap
te

r
C

ar
d

)

E
rr

or
T

er
m

in
at

io
n

(S
eq

ue
nc

e
E

nd
s)

S
ta

rt
H

er
e

S
ta

rt
H

er
e

S
ta

rt
H

er
e

P
C

I-
X

M
o

d
e

Figure 1-3: Transaction Flow without Crossing a Bridge

Revision 1.0b

38

T
ar

g
et

In
te

rf
ac

e

P
C

I-
X

B
ri

d
g

e
S

pl
it

R
es

p
o

n
se

I/O C
F

G
In

t.
A

ck
.

M
em

R
ea

d

E
rr

o
r

T
er

m
in

at
io

n
(S

eq
ue

nc
e

E
nd

s)

Im
m

ed
ia

te
R

es
p

o
n

se
P

os
te

d
M

em
or

y
W

rit
e

R
et

ry
R

es
p

o
n

se
(T

ra
ns

ac
tio

n
R

es
ch

ed
ul

ed
)

F
o

rw
ar

de
d

S
eq

u
en

ce
I/O C
F

G
In

t.
A

ck
.

M
em

R
ea

d

F
o

rw
ar

d
ed

S
eq

u
en

ce
P

os
te

d
M

em
or

y
W

rit
e

Im
m

ed
ia

te
R

es
p

o
n

se
C

om
pl

et
io

n
D

at
a

A
cc

ep
te

d

R
et

ry
R

es
p

o
n

se
(T

ra
ns

ac
tio

n
R

es
ch

ed
ul

ed
)

E
rr

o
r

T
er

m
in

at
io

n
(S

eq
ue

nc
e

E
nd

s)

F
o

rw
ar

d
ed

C
o

m
p

le
ti

o
n

C
om

pl
et

io
n

D
at

a
R

ea
d

S
C

M W
rit

e
A

ck
E

rr
or

S
ta

tu
s

S
pl

it
C

om
pl

et
io

n
In

it
ia

to
r

I/O C
F

G
In

t.
A

ck
.

M
em

R
ea

d

S
pl

it
C

om
pl

et
io

n
In

it
ia

to
r

I/O C
F

G
In

t.
A

ck
.

M
em

R
ea

d

S
pl

it
R

es
p

o
n

se
I/O C
F

G
In

t.
A

ck
.

M
em

R
ea

d

Im
m

ed
ia

te
R

es
p

o
n

se

R
et

ry
R

es
p

o
n

se
(T

ra
ns

ac
tio

n
R

es
ch

ed
ul

ed
)

E
rr

o
r

T
er

m
in

at
io

n
(S

eq
ue

nc
e

E
nd

s)

C
o

m
p

le
te

r
(e

.g
.H

o
st

B
ri

d
g

e)

S
eq

u
en

ce
In

it
ia

to
r

I/O C
F

G
In

t.
A

ck
.

M
em

or
y

S
pe

ci
al

C
yc

S
eq

u
en

ce
R

eq
u

es
te

r
I/O C
F

G
In

t.
A

ck
.

M
em

R
ea

d

R
eq

u
es

te
r

(e
.g

.A
d

ap
te

r
C

ar
d

)

E
rr

o
r

T
er

m
in

at
io

n
(S

eq
ue

nc
e

E
nd

s)

S
pl

it
C

om
pl

et
io

n
E

xc
ep

ti
on

M
es

sa
g

e
In

it
ia

to
r

In
it

ia
to

r
In

te
rf

ac
e

T
ar

g
et

In
te

rf
ac

e
In

it
ia

to
r

In
te

rf
ac

e

T
ar

g
et

In
te

rf
ac

e

In
it

ia
to

r
In

te
rf

ac
e

T
ar

g
et

In
te

rf
ac

e
In

it
ia

to
r

In
te

rf
ac

e

S
ta

rt
H

er
e

S
ta

rt
H

er
e

S
ta

rt
H

er
e

P
ri

m
ar

y
B

u
s

S
ec

o
n

d
ar

y
B

u
s

Figure 1-4: Transaction Flow Across a Bridge

Revision 1.0b

39

2. PCI-X Transaction Protocol

2.1. Sequences

A Sequence is one or more transactions associated with carrying out a single logical
transfer by a requester. A Sequence originates with a single request. If a Sequence is
broken into more than one transaction, the bytes of all these transactions are included in
the byte count of the request that started the Sequence.

Each transaction in the same Sequence carries the same unique Sequence ID (i.e., same
Requester ID and Tag). A requester must not initiate a new Sequence using a Tag until
the previous Sequence using that Tag is complete.

If the Sequence is a burst write and is disconnected either by the initiator or target, the
Sequence has more than one transaction. After a disconnection, the initiator must resume
the sequence by initiating another burst write transaction using the same command and
adjusting the starting address and byte count for the data already sent. The initiator must
deliver the full byte count of the Sequence no matter how many times the Sequence is
disconnected and regardless of whether continuations after a disconnection are terminated
with Retry. If the Sequence is a burst write and the target signals Target-Abort or no
target responds (Master-Abort), the Sequence ends when the transaction terminates. If
the Sequence is a burst write and the target signals Retry on the first data phase of the
Sequence, the Sequence ends immediately. The requester is not obligated to repeat a
Sequence terminated with Retry on the first data phase (unless it is required by the
application, e.g., a PCI-X bridge forwarding a memory write Sequence). However, if the
requester repeats the burst write, it is considered a new Sequence and is permitted to use
the same or a different command and attributes (byte count, Tag, etc.), within the limits
specified in Section 2.5. The requester is permitted to reuse a Tag as soon as the memory
write Sequence completes on the requester’s bus, independent of whether there are one or
more PCI-X bridges between the requester and completer, and if so, when those bridges
forward the Sequence to the completer.

If the Sequence is a burst read that is terminated with a Retry or executes as an
Immediate Transaction (i.e., the target delivers data or terminates with Target-Abort or
no target responds (Master-Abort)), the Sequence terminates when the transaction
terminates. The requester is not required to repeat a burst read transaction terminated
with a Retry, or to resume an immediate read Sequence. If the requester still needs the
data for the remainder of the Sequence (e.g., a bridge forwarding a Split Transaction), it
must repeat the transaction terminated with Retry or continue reading from the
disconnection point. However, this is considered a new Sequence and is permitted to use
the same or a different Tag (see Section 2.5). If a target responds immediately with data
(no Split Response) to a burst read transaction, and that transaction is later disconnected
(either by the initiator or the target), the target must discard any state information
associated with that transaction and any undelivered data, unless the target guarantees
that the data will not become stale. Delayed Transactions as defined in PCI 2.2 are not
permitted.

If the Sequence executes as a Split Transaction, the Sequence has exactly one Split
Request transaction (for each bus it crosses) and one or more Split Completion
transactions. Split Transactions do not complete until the Split Completions satisfy the
byte count or indicate that an error occurred. If the target (completer) terminates a burst
read transaction with Split Response, the completer assumes the responsibility for
delivering the entire byte count (except for error conditions described in

Revision 1.0b

40

Section 2.10.6.2). Read data is sent in one or more Split Completion transactions, each of
which includes in the address phase the Sequence ID of the original request. If the
completer initiates multiple Split Completions for a single Sequence, the completer is
required to initiate them in address order.

If a Sequence crosses a PCI-X bridge, the number of transactions within the Sequence on
each bus is determined by the behavior of the devices on each bus. The Sequence may
have the same or a different number of transactions on each bus. The bridge is required
to keep Split Completions for the same Sequence in address order.

2.2. Allowable Disconnect Boundaries and Buffer Size

An allowable disconnect boundary (ADB) is a naturally aligned 128-byte address; that is,
an address whose lower 7 bits are zeros. After a burst data transfer starts and the target
signals that it will accept more than a single data phase, the transaction can only be
stopped in one of the following ways:

• target or initiator disconnection at an ADB

• the byte count is satisfied

• Target-Abort

If a burst transaction is disconnected either by the initiator or the target on an ADB, the
address of the last byte transferred modulo 80h is 7Fh. That is, the lower seven bits of
the address of the last byte transferred are 7Fh.

ADBs are the same regardless of the width of the transaction. A burst transaction
requires 16 data phases to go from one ADB to the next on a 64-bit bus and 32 data
phases on a 32-bit bus.

Burst transactions are permitted to start on any byte address. Both the initiator and the
target are permitted to disconnect a burst transaction on any ADB. A target is permitted
also to disconnect after a single data phase. (See Section 2.11.1.1 for the special case for
the initiator when the starting address is less than four data phases from an ADB.)
Therefore, the minimum buffer size that both the initiator and target must use is
128 bytes.

Implementation Note: Efficient Partitioning of Large Operations

ADBs are naturally aligned to improve the efficiency of aligned-address devices like host
bridges. Host bridges generally function much more efficiently when requests are
aligned to their cacheline boundaries.

A device reading or writing a large block of data is permitted to use transactions of any
size. However, performance is generally better if the device uses the largest allowable
block size and disconnects on efficient boundaries. If a device partitions a large transfer
into multiple Sequences (e.g., if the Maximum Memory Read Byte Count register is
programmed to a value smaller than the size of the operation (see Section 7.2.3) or the
transfer is larger than 4096 bytes), those Sequences generally execute faster and more
efficiently in the host bridge if they are partitioned on ADBs.

Therefore, whenever an initiator breaks a large operation into multiple Sequences, the
initiator is encouraged to break it only on ADBs.

Revision 1.0b

41

Implementation Note: Atomic Operations

Unlike conventional PCI, the restricted disconnection boundaries of PCI-X transactions
guarantees that certain transactions complete atomically. That is, within certain limits, a
PCI-X requester is guaranteed that all data phases of a burst transaction complete as a
single transaction and are not interrupted by other transactions.

If the requester and completer restrict the transactions as described below, the transaction
executes atomically on the bus:

1. The transaction length is one ADQ.

2. The completer does not signal Single Data Phase Disconnect.

3. The transaction does not cross a bus segment operating in conventional PCI mode.

If these restrictions are met, the transaction completes atomically, even if it crosses one or
more PCI-X bridges between the requester and completer.

If these restrictions are met, devices are permitted to define their programming model to
make use of atomic operations. For example, a device could include a 64-bit pointer that
must be read and written in a single operation. Even if such a device (or an intervening
bus segment) is only 32 bits wide, the pointer is updated as a single 64-bit operation,
provided that the requester always initiates the operation as a single transaction, and the
device is always used in a PCI-X system.

Conventional PCI does not provide this capability, since conventional PCI transactions
are permitted to be disconnected on any boundary. Therefore, care must be taken to limit
the use of conventional PCI devices in any system in which this PCI-X feature is
required. The presence of a conventional PCI device on a bus segment requires that bus
segment to operate in conventional mode.

2.3. Dependencies Between Address, Byte Count, and Byte
Enables

As in conventional PCI, PCI-X Memory, I/O, and Configuration Spaces are addressable
at the byte level. That is, each byte has a unique address, and each address space uses
different commands. Furthermore, transactions are naturally aligned to byte lanes. That
is, bytes appear on byte lanes according to their individual byte address and the width of
the transfer (independent of the starting address of the transaction). Table 2-1 shows how
bytes are assigned to byte lanes.

Table 2-1: Byte Lane Assignments

Data Byte Lane
Byte

Address
AD[2::0]

64-Bit
Transfer

32-Bit
Transfer

0 AD[7::0] AD[7::0]
1 AD[15::08] AD[15::08]
2 AD[23::16] AD[23::16]
3 AD[31::24] AD[31::24]
4 AD[39::32] AD[7::0]
5 AD[47::40] AD[15::08]
6 AD[55::48] AD[23::16]
7 AD[63::56] AD[31::24]

Revision 1.0b

42

For burst transactions, the PCI-X requester uses the full address bus to indicate the
starting byte address (including AD[1::0]) and includes the byte count in the attribute
field. All bytes from the starting address through the end of the byte count are included
in the transaction or subsequent continuations of the Sequence (but see also the use of
byte enables on Memory Writes transactions described below). (The byte count
sometimes spans more that one transaction. See Section 2.5.) Bytes prior to the starting
address or beyond the ending address (i.e., starting address + byte count - 1) are not
included in the Sequence. These addresses are not affected by write transactions, and
data is not predictable on read transactions. For burst transactions, the starting address
and ending address are not required to have any alignment to the bus width.

For I/O and memory DWORD transactions, the PCI-X initiator uses the full address bus
to indicate the starting address (including AD[1::0]). (Note that this is the same as
conventional I/O transaction but not conventional memory transactions.) If at least one
byte enable is asserted, the starting address is the address of the first enabled byte, as
shown in Table 2-2. If no byte enables are asserted, the starting address is permitted to
be any byte in the DWORD. The ending address is always the last byte of the DWORD.
The completer is permitted to use either AD[1::0] or the byte enables to determine the
first byte of the transaction.

Table 2-2: AD[1::0] and Byte Enable Encodings for I/O and DWORD Memory
Transactions

AD[1::0] Valid Byte Enable
Combinations

(Note 1)
00b xxx0b or 1111b
01b xx01b or 1111b
10b x011b or 1111b
11b 0111b or 1111b

Notes:
1. “1” indicates the byte enable is deasserted. “0” indicates the byte enable is

asserted. “x” indicates the byte enable is permitted to be either asserted or
deasserted.

Like conventional PCI, the lower two address bits for a PCI-X configuration transaction
indicate the configuration transactions type (see Section 2.7.2.2). The starting and ending
addresses are considered to be the first and last bytes of the DWORD, respectively.

As in conventional PCI, Interrupt Acknowledge and Special Cycle transactions have no
address and are permitted to drive any stable value during the address phase.

Byte enables are included in the Requester Attributes of all DWORD transactions. Byte
enables are also included in the C/BE[7::0]# bus for 64-bit transfers and the
C/BE[3::0]# bus for 32-bit transfers in the data phases of all Memory Write transactions.
The C/BE# bus is reserved and driven high by the initiator throughout all data phases of
all other transactions.

Byte enables further qualify the bytes affected by the transaction. For those transactions
that include byte enables, only bytes for which the byte enable is asserted are affected by
the transaction. DWORD transactions are permitted to have any combination of byte
enables, including no byte enables asserted. Memory Write transactions are permitted to
have any combination of byte enables between the starting and ending addresses,
inclusive, including no byte enables asserted. Byte enables must be deasserted for bytes
before the starting address and after the ending address (if those addresses are not aligned
to the width of the bus) as shown in Table 2-3 and Table 2-4. See Section 2.12.3 for

Revision 1.0b

43

exceptions and additional requirements when a 64-bit initiator addresses a 32-bit target
and AD[2] is 1.

Table 2-3: Starting Address and Byte Enable Dependencies for 32-bit Transactions
Using the Memory Write Command

AD[1::0] Valid Byte Enable
Combinations C/BE[3::0]#

(Note 1)
00b xxxxb
01b xxx1b
10b xx11b
11b x111b

Notes:
1. “1” indicates the byte enable is deasserted. “x” indicates the byte enable is permitted
to be either asserted or deasserted.

Table 2-4: Starting Address and Byte Enable Dependencies for 64-bit Transactions
Using the Memory Write Command

AD[2::0] Valid Byte Enable
Combinations C/BE[7::0]#

(Note 1, 2)
000b xxxx xxxxb
001b xxxx xxx1b
010b xxxx xx11b
011b xxxx x111b
100b xxxx xxxxb
101b xxx1 xxx1b
110b xx11 xx11b
111b x111 x111b

Notes:
1. “1” indicates the byte enable is deasserted. “x” indicates the byte enable is permitted
to be either asserted or deasserted.
2. C/BE[7::4}# are required to be copied to C/BE[3::0]# for 32-bit targets when AD[2] of
the starting address is 1. See Section 2.12.3.

2.4. PCI-X Command Encoding

Table 2-5 shows the PCI-X command encodings. Conventional PCI command encodings
are shown for reference. Initiators must not generate reserved commands. Targets must
ignore (must not assert DEVSEL# or change any state) any transactions using a reserved
command.

Revision 1.0b

44

Table 2-5: PCI-X Command Encoding

C/BE[3::0]#
or

C/BE[7::4]#

Conventional
PCI Command
(ref)

PCI-X Command Length Byte-
Enable
Usage

Notes

1

0000b Interrupt
Acknowledge

Interrupt Acknowledge DWORD attr

0001b Special Cycle Special Cycle DWORD attr 4
0010b I/O Read I/O Read DWORD attr
0011b I/O Write I/O Write DWORD attr
0100b Reserved Reserved na na
0101b Reserved Reserved na na
0110b Memory Read Memory Read DWORD DWORD attr
0111b Memory Write Memory Write Burst dp
1000b Reserved Alias to Memory Read Block Burst none 2
1001b Reserved Alias to Memory Write Block Burst none 3
1010b Configuration

Read
Configuration Read DWORD attr 4

1011b Configuration
Write

Configuration Write DWORD attr 4

1100b Memory Read
Multiple

Split Completion Burst none

1101b Dual Address
Cycle

Dual Address Cycle na na 1

1110b Memory Read
Line

Memory Read Block Burst none

1111b Memory Write
and Invalidate

Memory Write Block Burst none

Legend:
DWORD Transaction must be a single DWORD (or less), and REQ64# must not be asserted.
Burst Transaction permitted to be any length (from 1 to 4096 bytes), and REQ64# is asserted at

the option of the initiator.
na Not applicable.
attr The byte enables appear in the Requester Attributes. All bit combinations are legal,

including no byte enables asserted. The C/BE# bus is reserved and driven high during the
data phase.

dp The C/BE# bus contains valid byte enables for each data phase. All bit combinations
between the starting and ending address inclusive are legal, including no byte enables
asserted.

none All bytes between the starting and ending address inclusive are affected. The C/BE# bus is
reserved during all data phases and driven high by the initiator.

Notes:
1. For all commands other than Dual Address Cycle, the transaction command appears on C/BE[3::0]#

during the (single) address phase. For transactions with dual address cycles, C/BE[3::0]# contain the
Dual Address Cycle command (1101b) in the first address phase and the transaction command in the
second address phase. For 64-bit transactions, C/BE[7::4]# contain the transaction command in both
address phases.

2. This command is reserved for use in future versions of this specification. Current initiators must not
generate this command. Current targets must treat this command as if it were Memory Read Block.

3. This command is reserved for use in future versions of this specification. Current initiators must not
generate this command. Current targets must treat this command as if it were Memory Write Block.

4. These commands require special protocol. See Sections 2.7.2 and 2.7.3.

Revision 1.0b

45

2.5. Attributes

Attributes are additional information included with each transaction that further defines
the transaction. The initiator of every transaction drives attributes on the C/BE[3::0]#
and AD[31::00] buses in the attribute phase. For burst transactions, all attribute bits are
high-true. That is, an attribute bit value of 1 appears on both the C/BE[3::0]# and
AD[31::00] buses as a high logic voltage, and a bit value of 0 appears as a low logic
voltage. For DWORD transactions, all attribute bits are high-true except the byte
enables, which are low-true. The attribute phase is always a single clock regardless of
the width of the data transfer or the width of the address (single or dual address cycle).
The upper buses (AD[63::32] and C/BE[7::4]#) of 64-bit devices are reserved and
driven high during the attribute phase.

There are three different attribute formats for requesters and one format for completers.
The Requester Attribute formats for burst and DWORD transactions are presented in this
section. The Requester Attribute format for Type 0 configuration transactions is
presented in Section 2.7.2.2 and Completer Attributes for Split Completions in
Section 2.10.4.

Figure 2-1 and Figure 2-2 show the bit assignments for the Requester Attribute for burst
and DWORD transactions, respectively. Table 2-6 describes the bit definitions.

Upper
Byte Count

C/BE[3::0]# AD[31::00]

Low er
Byte Count

Requester
Bus

Number

Requester
Device

Number

Requester
Function
Number

TagN
S

R
O

R

000708101115162324313235 282930

Figure 2-1: Burst Transaction Requester Attribute Bit Assignments

Byte Enables

C/BE[3::0]# AD[31::00]

Reserved
Requester

Bus
Num ber

Requester
Dev ice

Num ber

Requester
Function
Num ber

TagR

000708101115162324313235 282930

N
S

R
O

Figure 2-2: DWORD Transaction Requester Attribute Bit Assignments

Revision 1.0b

46

Table 2-6: Burst and DWORD Requester Attribute Field Definitions

Attribute Function
Reserved (R) Must be set to 0 by the requester and ignored by the

completer (except for parity checking). PCI-X bridges
forward this bit unmodified.

Byte Enables DWORD transactions include the byte enables for the
transaction in the upper four bits of the attributes
(C/BE[3::0]#). A byte is affected by the transaction if its byte
enable in the attribute phase is a 0 (low logic voltage), and a
byte is not affected by the transaction if its byte enable is a 1
(high logic voltage).

No Snoop (NS) If a requester sets this bit, the requester guarantees that the
locations between the starting and ending address, inclusive,
of this Sequence are not stored in any cache in the system.
How the requester guarantees this is beyond the scope of
this specification. Examples of transactions that could
benefit from setting this bit are transactions that read or write
non-cacheable sections of main memory, or sections that
have previously been flushed from the cache through
hardware or software means. Note that PCI-X, like
conventional PCI, does not require systems to support
coherent caches for addresses accessed by PCI-X
requesters; but for those systems that do, this bit allows
device drivers to avoid cache snooping on a Sequence-by-
Sequence basis to improve performance.

If a write transaction is disconnected, the requester must not
change the value of this attribute on any subsequent
transaction in the same Sequence. (If an immediate read
transaction disconnects, the Sequence ends.)

This attribute is used only for memory transactions that are
not Message Signaled Interrupts (as defined in PCI 2.2).
The requester must not set this bit if the transaction is a
Message Signaled Interrupt, I/O, or Special Cycle
transaction. (See Section 2.7.2.2 for configuration
transactions and Section 2.10.4 for Split Completions.)

The use of this bit is optional for completers. If a completer
does not implement the use of this bit, it treats all
transactions as if the bit is not set.

This bit is ignored by PCI-X bridges and forwarded
unmodified with the transaction.

Relaxed Ordering (RO) A requester is permitted to set this bit only if its programming
model and device driver guarantee that the particular
memory write or read transactions are not required to remain
in strict order. In general, devices are permitted to set the
Relaxed Ordering attribute bit for payload Sequences and
must clear it for control and status Sequences. See
Section 11 for a complete discussion of usage models for
relaxed transaction ordering. No requester is permitted to
set this bit if the Enable Relaxed Ordering bit in the PCI-X
Command register is not set.

Revision 1.0b

47

Attribute Function
A requester is permitted to set this bit on a read Sequence if
its usage model does not require Split Read Completions for
this transaction to stay in order with respect to posted
memory writes moving in the same direction. Split Read
Requests are unaffected by this bit. (Split Completion
transactions from a single Sequence always stay in address
order with respect to each other.)

A requester is permitted to set this bit on a memory write
Sequence if its usage model does not require this memory
write Sequence to stay in order with respect to other memory
write Sequences moving in the same direction. (Memory
write data for the same Sequence always stay in address
order.)

If a transaction is disconnected, the requester must not
change the value of this attribute on any subsequent
transaction in the same Sequence.

This attribute is used only for memory transactions that are
not Message Signaled Interrupts (as defined in PCI 2.2).
The requester must not set this bit if the transaction is a
Message Signaled Interrupt, I/O, or Special Cycle
transaction. (See Section 2.7.2.2 for configuration
transactions and Section 2.10.4 for Split Completions.)

Use of this bit is optional for targets. If the target (completer
or an intervening bridge) implements this bit, and the bit is
set for a read transaction, the target is permitted to allow
read-completion transactions for this Sequence to pass
posted memory write transactions moving in the same
direction. If the bit is not set or if the target (completer or
bridge) does not implement the bit, the target keeps all read-
completion transactions in strict order relative to memory
write transactions moving in the same direction.

If the bit is set for a memory write transaction, the host
bridge is permitted to allow this memory write transaction to
pass previously posted memory write transactions moving in
the same direction. The host bridge is also permitted to
allow bytes within the transaction to be written to system
memory in any order. (The bytes must be written to the
correct system memory locations. Only the order in which
they are written is unspecified). PCI-X bridges ignore this bit
for memory write transactions and forward them in the order
in which they were received.

Revision 1.0b

48

Attribute Function
Tag This 5-bit field uniquely identifies up to 32 Sequences from a

single initiator. The initiator assigns a unique Tag to each
Sequence that begins before previous ones end. Other than
the requirement for uniqueness, the PCI-X definition does
not control how the initiator assigns these numbers.
Requesters use this field to identify the appropriate Split
Completion transaction.

The combination of the Requester ID and Tag is referred to
as the Sequence ID.

Requester Bus Number This 8-bit field identifies the requester’s bus number.
Requesters supply this number from the Bus Number
register in the PCI-X Status register. The value FFh is
reserved and means the requester’s PCI-X Status register
has not been initialized.

The combination of the Requester Bus Number, Requester
Device Number, and Requester Function Number is referred
to as the Requester ID.

Requester Device
Number

This 5-bit field contains the device number assigned to the
requester. Requesters supply this number from the Device
Number register in the PCI-X Status register. The value 1Fh
is reserved and means the requester’s PCI-X Status register
has not been initialized. The Device Number of the source
bridge is always 00h.

The combination of the Requester Bus Number, Requester
Device Number, and Requester Function Number is referred
to as the Requester ID.

Requester Function
Number

This 3-bit field contains the function number of the requester
within the device. This is the function number in the
configuration address to which the function responds. Unlike
the Device Number and Bus Number fields in the PCI-X
Status register, the value of the Function Number field is
assigned to the function by design and needs no
initialization.

The combination of the Requester Bus Number, Requester
Device Number, and Requester Function Number is referred
to as the Requester ID.

Revision 1.0b

49

Attribute Function
Upper Byte Count,
Lower Byte Count

Burst transactions include the byte count in the Requester
Attributes. This 12-bit field is divided between the Upper
Byte Count in the C/BE[3::0]# bus and the Lower Byte
Count in the AD[7::0] bus. It indicates the number of bytes
the initiator (requester or bridge) plans to move in the
remainder of this Sequence. There is no guarantee that the
initiator will successfully move the entire byte count in a
single transaction. If this transaction is disconnected for any
reason and the initiator continues the Sequence, the initiator
must adjust the contents of the Byte Count field in the
subsequent transactions of the same Sequence to be the
number of bytes remaining in this Sequence. The Byte
Count is specified as a binary number, with
0000 0000 0001b indicating 1 byte, 1111 1111 1111b
indicating 4095 bytes, and 0000 0000 0000b indicating
4096 bytes.

The byte count is not included in the Requester Attributes of
DWORD transactions. See Section 2.7.2.2 for the use of
these fields in configuration transactions.

2.6. Burst Transactions

A burst transaction is a transaction that uses one of the following commands:

• Memory Read Block

• Memory Write Block

• Memory Write

• Alias to Memory Read Block

• Alias to Memory Write Block

• Split Completion

The Alias to Memory Read Block and Alias to Memory Write Block commands are not
generated by initiators and are treated as Memory Read Block and Memory Write Block,
respectively, by targets. These commands are reserved for future use by the PCI Special
Interest Group.

Burst transactions transfer data on one or more data phases, up to that required to satisfy
the maximum byte count. They include the byte count for the remainder of the Sequence
in the Byte Count field of the attributes (see Section 2.5). Burst transactions are
permitted to be initiated both as 64-bit and 32-bit transactions.

Burst transactions use the full address bus (including AD[2::0]) to specify the starting
byte address of the transaction. There are no restrictions on the starting address. The
transaction is permitted to begin on any byte address. (Byte lanes are always naturally
aligned to the address. That is, the data for an address with AD[2::0] of 000b is always
on byte lane 0. The data for an address with AD[2::0] of 001b is always on byte lane 1,
etc. See Table 2-1.)

Revision 1.0b

50

There are few boundary restrictions for burst transactions. For example, burst
transactions can start on one side and end on the other side of the following:

• An ADB

• A memory page boundary

• The first 4 GB memory address boundary

Implementation Note: Crossing the First 4 GB Address Boundary

If a burst transaction crosses the first 4 GB boundary (i.e., the boundary between memory
locations for which the upper 32-bit of the address are 0 and locations for which they are
not), the Sequence begins with a single address cycle (see Section 2.12.1). If the
Sequence is disconnected and resumes beyond the first 4 GB boundary, the continuation
transaction requires a dual address cycle.

PCI-X bridges have range registers that concatenate the ranges of all devices on their
subordinate buses and so, in some cases, could have a range that crosses the 4 GB
boundary. Since no single device on the secondary bus straddles the boundary, in normal
use no single transaction crosses the boundary. Although initiating a transaction that
crosses from one device to another is not intended to be a normal operation and in some
cases causes a Split Completion Exception Message, initiators are not prohibited from
doing so. Such behavior would occur, for example, if a bridge combined write
transactions intended for different targets at adjacent addresses. A PCI-X bridge must
forward a transaction that crossed the first 4 GB boundary without causing errors.

Host bridges commonly respond to addresses on both sides of the 4 GB address
boundary. However, in many systems, the addresses immediately below the 4 GB
boundary are assigned to special system functions rather than system memory. In such
systems, no initiator is ever assigned a memory buffer that straddles the 4 GB boundary,
since the addresses below the 4 GB boundary are not general-purpose memory. Host
bridges designed exclusively for such systems are never the target of a burst transaction
that crosses the 4 GB boundary and, therefore, have no need for special hardware for this
case.

A transaction using any of the memory write commands is permitted to cross a device
boundary. In such a case, the first target disconnects the transaction at the ADB that
corresponds to its device boundary, and another target (if present) responds when the
Sequence resumes. Memory write transactions commonly cross device boundaries as a
consequence of combining smaller write transactions of different Sequences. (See
Section 8.4.6.)

Read commands generally cross a device boundary only under abnormal conditions. A
normally functioning requester understands the address range of the completer it is
attempting to read and does not request data that is out of range. Combining separate
read Sequences by bridges is generally not allowed. (See Section 8.4.2.) A requester that
initiates a burst read that crosses a device boundary must be prepared for it to complete in
any of the following ways:

• Completion as an Immediate Transaction to the device boundary. The completer
must be on the same bus segment as the requester for this case to occur. How a
requester would discover what bus segment the completer is on is beyond the scope
of the PCI-X definition.

Revision 1.0b

51

• A Split Completion Message indicating the request is out of range or that the
Sequence has crossed a device boundary:

◊ Byte Count Out of Range from the completer. (See Section 2.10.6.)

◊ Master-Abort from an intervening bridge. (See Section 8.8.)

◊ Target-Abort from an intervening bridge. (See Section 8.8.)

• Target-Abort. (See Section 2.11.2.5.)

Burst transactions are not permitted to go beyond the end of the 64-bit memory address
space. In other words, the address plus the byte count minus one must not exceed
FFFF FFFF FFFF FFFFh.

After the attribute phase and during the data phases of a burst transaction, the C/BE# bus
is reserved and driven high by the initiator for all transactions except Memory Write. See
Section 2.6.1 for the behavior of the C/BE# bus for a Memory Write transaction.

The following two sections describe basic burst memory write and read transactions. All
figures illustrate a single-address-cycle transaction between an initiator and target with
the same bus width. See Section 2.12 for dual-address-cycle transactions and the
requirements when the initiator and target are of different widths.

2.6.1. Burst Writes and Split Completions

Burst write transactions use the Memory Write, Memory Write Block, or Alias to
Memory Write Block commands. Burst write and Split Completion transactions are the
same in most respects. For these transactions, the initiator is the source not only of the
command, address, and attributes but also the data.

The target is permitted to respond to a burst write transaction with any of the following:

• Target-Abort

• Single Data Phase Disconnect

• Wait State

• Data Transfer

• Retry

• Disconnect at Next ADB (Some restrictions apply to bridges. See Section 8.4.6.)

The target is permitted to respond to a Split Completion transaction with any of the
following:

• Target-Abort (See Section 2.10.5 for restrictions.)

• Wait State

• Data Transfer

• Retry (Allowed only for bridges. See Sections 2.13 and 8.4.5.)

• Disconnect at Next ADB (Allowed only for bridges. See Sections 2.13 and 8.4.5.)

The target is not permitted to respond with Split Response. Burst write and Split
Completions are always executed as Immediate Transactions. In some cases, signaling
Target-Abort for a Split Completion causes the system to halt execution. See
Section 2.10.5 for restrictions on signaling Target-Abort for a Split Completion
transaction. The use of Retry, Single Data Phase Disconnect, and Disconnect at Next

Revision 1.0b

52

ADB has some restrictions. See Sections 2.10.5 and 2.13 for restrictions for simple
devices and Section 8.4.5 for restrictions for PCI-X bridges.

The C/BE# bus is reserved and driven high after the attribute phase of all burst write and
Split Completion transactions except Memory Write. All bytes between the starting and
ending address inclusive are included in these transactions. See Section 2.12.3 for
requirements for 64-bit initiators addressing 32-bit targets.

Transactions using the Memory Write command include explicit byte enables on the
C/BE# bus for each data phase. A byte is not affected by the transaction in any way if its
byte enable is not asserted. Except for a case of a 64-bit initiator when AD[2] is 1, which
is described in Section 2.12.3, the byte enables are deasserted for all bytes before the
starting address or after the ending address (if those addresses are not aligned to the width
of the bus). All byte enable patterns are permitted (between the starting and ending
address, inclusive), including no byte enables asserted. The byte count is not affected if
byte enables are deasserted. In other words, the byte count would be the same whether
all byte enables were asserted or no byte enables were asserted. The initiator is required
to drive all bits of the AD bus on every data phase, even if some byte enables are
deasserted. The value of the data driven on all the byte lanes is included in the generation
of bus parity, even if some of the byte enables are deasserted.

Implementation Note: Completing the Byte Count of a Memory Write
Sequence.

PCI-X requesters are required to deliver the full byte count for a memory write Sequence
(both for Memory Write and Memory Write Block commands). (See Section 2.1.) Many
implementations start a write Sequence on the PCI bus before all the data has arrived at
the interface from its remote location. In such implementations, if an error occurs that
prevents the arrival of the rest of the data, the requester is still obligated to finish the full
byte count of the write on the PCI bus. The value of the data used by the requester in
such situations is beyond the scope of this specification.

If the requester uses the Memory Write command, the requester has the option of
deasserting byte enables for bytes that it supplied after the error occurred.

After such an error condition, the device must use other means beyond the scope of this
specification to notify its device driver that the problem occurred and that not all of the
data is valid.

Revision 1.0b

53

Implementation Note: Comparison of PCI-X “Memory Write Block”
and Conventional PCI “Memory Write and Invalidate”

The PCI-X Memory Write Block command has some similarities and some differences
with the conventional PCI Memory Write and Invalidate command. This section offers
some guidelines for the use of the Memory Write Block command for those applications
that benefit from the characteristics of the Memory Write and Invalidate command.

PCI 2.2 supports the Memory Write and Invalidate command as a means to improve
system performance when used in conjunction with a cache coherency policy. When
using this command in a conventional PCI system, the initiating device must guarantee
that complete cachelines are transferred during the write operation. All devices capable
of generating a Memory Write and Invalidate command must support the Cacheline Size
register. Additionally, all Memory Write and Invalidate transactions are required to start
and end on cacheline boundaries, to have all byte enables asserted, and to consist of one
or more cachelines. The host bridge is assured that data held in the processor’s cache can
be invalidated without requiring a write-back into system memory thus improving system
performance.

The PCI-X definition provides similar capabilities with the Memory Write Block
command. It requires that all bytes between the starting and ending address areincluded
in the write operation. With additional usage restrictions, the Memory Write Block
command can be made to function identically to the Memory Write and Invalidate
command. If a PCI-X device that is capable of bursting data into system memory wants
to optimize for cache operation, that device should follow the same guidelines as listed
above for conventional PCI devices:

• Align the start of the transaction to the beginning of a cacheline.

• Ensure that the length of the transaction is a multiple of the Cacheline Size register.

• Do not set the No Snoop attribute bit (unless the cache coherency policy guarantees
that this line is not in any cache).

• Use the Memory Write Block command.

There is no requirement that PCI-X devices capable of bursting data to memory follow
the above guidelines. Host bridges must be capable of accepting Memory Write Block
commands with any starting address and any length supported by PCI-X. Although the
use of the Memory Write Block command has no directly specified relationship to the
value programmed in the Cacheline Size register, improved system performance when
bursting to system memory can be obtained in many systems by following the above
guidelines.

The initiator is not permitted to insert wait states, so the initiator must drive write (or
Split Completion) data on the bus two clocks after the attribute phase. If the target inserts
initial wait states, it must do so in pairs of clocks (for transactions that successfully
transfer data), and the initiator must toggle between the first and second data patterns
until the target begins accepting data. See Section 2.9.2 for a complete discussion of the
effects of different DEVSEL# decode times and target initial wait states.

Implementation Note: Don’t-Care Clock on Write Data

The data is not required to be valid in the clock after the attribute phase of a write (or
Split Completion) transaction. This clock could be used as a turn-around clock by multi-
package host bridges that source the address from one package and the data from another.

Revision 1.0b

54

The next two figures show burst write transactions using the Memory Write command.
Memory Write Block and Split Completion transactions behave the same way as
illustrated except that the C/BE# bus is driven high by the initiator during each data
phase. The top portion of the diagram shows the signals as they appear on the bus. The
middle and lower portions of the diagram show the bus from the viewpoint of the initiator
and target, respectively. Signal names preceded by “s1_” indicate a signal that is internal
to the device after the signal has been sampled. For example, the initiator asserts
FRAME# on clock 3. The target samples FRAME#, so s1_FRAME# is asserted on
clock 4.

Figure 2-3 shows the minimum DEVSEL# decode time and target initial latency and
eight data phases.

PCI_CLK

1 2 3 4 5 6 7 8 9 10 11

Initiator Signals
Termination

2 Clocks before
End of Transaction

12 13 14

Initiator's View of the PCI Bus

Bus
TransactionDecode

Speed A

15

D
ata

T
ransfer

D
ata

T
ransfer

D
ata

T
ransfer

D
ata

T
ransfer

D
ata

T
ransfer

D
ata

T
ransfer

D
ata

T
ransfer

D
ata

T
ransfer

Target's View of the PCI Bus

FRAM E#

IR DY#

AD DATA-1 DATA-2 DATA-3 DATA-4 DATA-5 DATA-6 DATA-7ADDRESS ATTR DATA-0

C /BE# BUS CMD ATTR BE#'s-0 BE#'s-1 BE#'s-2 BE#'s-3 BE#'s-4 BE#'s-5 BE#'s-6 BE#'s-7

s1_TRD Y#

s1_DEVSEL#

PCI Bus

ADDRESSAD DATA-0 DATA-1 DATA-2 DATA-3 DATA-4ATTR DATA-5 DATA-6 DATA-7�BUS CMDC/BE# ATTR BE#'s-0 BE#'s-1 BE#'s-2 BE#'s-3 BE#'s-4 BE#'s-5 BE#'s-6 BE#'s-7

IR DY#

TRDY#

DEVSEL#

FRAM E#

s1_FRA M E#

ADDRESS ATTRs1_AD DATA-0 DATA-1 DATA-2 DATA-3 DATA-4 DATA-5 DATA-6 DATA-7

s1_C/BE# BUS CMD ATTR BE#'s-0 BE#'s-1 BE#'s-2 BE#'s-3 BE#'s-4 BE#'s-5 BE#'s-6 BE#'s-7

s1_IR DY#

TRDY#

DEVSEL#

�

Figure 2-3: Burst Memory Write Transaction with No Target Initial Wait States

Figure 2-4 shows a similar transaction with minimum DEVSEL# decode timing but with
only six data phases and a target initial latency of five clocks (two wait states). Notice at
clocks 6 and 7, the initiator toggles between DATA-0 and DATA-1. This toggling starts
one clock after the target asserts DEVSEL# (clock 5) and continues until the target
asserts TRDY# (clock 8). (Note that this data toggling is why target initial wait states

Revision 1.0b

55

must occur in pairs for memory write and Split Completion transactions.) See
Section 2.9.2 for a complete discussion of the effects of different DEVSEL# decode
times and target initial wait states.

PCI_CLK

1 2 3 4 5 6 7 8 9 10 11

Initiator Signals
Termination

2 Clocks before
End of Transaction

12 13 14

PCI Bus

Initiator's View of the PCI Bus

Target's View of the PCI Bus

Bus
Transaction

Target Initial
W ait State Pair

15

Decode
Speed A

D
ata

T
ran

sfer

D
ata

T
ran

sfer

D
ata

T
ran

sfer

D
ata

T
ran

sfer

D
ata

T
ran

sfer

D
ata

T
ran

sfer

FRAM E#

ADDRESSAD ATTR�DATA-0 DATA-1 DATA-0 DATA-1 DATA-2 DATA-3 DATA-4 DATA-5

BUS CMDC/BE ATTR BE#'s-0 BE#'s-1 BE#'s-0 BE#'s-1 BE#'s-2 BE#'s-3 BE#'s-4 BE#'s-5

IRDY#

TRDY#

DEVSEL#

FRAM E#

IRDY#

AD DATA-1 DATA-0 DATA-1 DATA-2 DATA-3 DATA-4 DATA-5ADDRESS DATA-0ATTR

�
�

C/BE# BE#'s-1 BE#'s-0 BE#'s-1 BE#'s-2 BE#'s-3 BE#'s-4 BE#'s-5BUS CMD BE#'s-0ATTR

s1_TRDY#

s1_DEVSEL#

s1_FRAM E#

ADDRESS ATTRs1_AD DATA-0 DATA-1 DATA-2 DATA-3 DATA-4 DATA-5

s1_IRDY#

TRDY#

DEVSEL#

BUS CMD ATTRs1_C/BE# BE#'s-0 BE#'s-1 BE#'s-2 BE#'s-3 BE#'s-4 BE#'s-5

Figure 2-4: Burst Memory Write Transaction with Two Target Initial Wait States

Revision 1.0b

56

2.6.2. Burst Reads

Burst read transactions use the Memory Read Block or Alias to Memory Read Block
commands. For these transactions, the initiator is the source of the command, address,
and attributes, and the completer is the source of the data.

The target is permitted to respond to a burst read transaction with any of the following:

• Split Response

• Target-Abort

• Single Data Phase Disconnect

• Wait State

• Data Transfer

• Retry

• Disconnect at Next ADB

If the target responds by signaling Single Data Phase Disconnect, Data Transfer, or
Disconnect at Next ADB, data transfers during the read transaction. If the target
responds with Split Response, no data transfers during the read transaction but is
transferred later in one or more Split Completion transactions.

Implementation Note: Immediate Response from Memory Address
with Read Side Effects

If a target responds immediately with data for more than a single data phase (i.e., signals
Data Transfer or Disconnect at Next ADB) to a burst read transaction, the target and
initiator are permitted only to disconnect the transaction on ADBs. If the address range
being read includes any locations with read side effects (i.e., locations whose state
changes when they are read), the target must not read those locations except when it is
guaranteed that the initiator will accept the data. Therefore, in this case, the target cannot
fetch beyond an ADB until the transaction crosses the ADB.

The target is encouraged to complete a read of such a location as a Split Transaction. The
initiator is obligated always to accept the entire byte count of a Split Transaction. Split
Transactions use the bus more efficiently than transactions with immediate response that
are disconnected on each data phase or each ADB.

The C/BE# bus is reserved and driven high by the initiator after the attribute phase of all
burst read transactions. All bytes between the starting and ending address inclusive are
included in these transactions.

Revision 1.0b

57

Figure 2-5 shows a burst read transaction in which the target signals Data Transfer. The
target responds with the minimum DEVSEL# timing and target initial latency. The top
portion of the diagram shows the signals as they appear on the bus. The middle and
lower portions of the diagram show the bus from the viewpoint of the initiator and target,
respectively. Signal names preceded by “s1_” indicate a signal that is internal to the
device after the bus signal has been sampled.

PCI_CLK

1 2 3 4 5 6 7 8 9 10 11

Initiator Signals
T erm ination

2 Clocks before
End of Transaction

12 13 14

PCI Bus

Initiator's View of the PCI Bus

Bus
T ransaction

Decode
Speed A

15
D

ata
T

ran
sfer

D
ata

T
ran

sfer

D
ata

T
ran

sfer

D
ata

T
ran

sfer

D
ata

T
ran

sfer

D
ata

T
ran

sfer

D
ata

T
ran

sfer

D
ata

T
ran

sfer

Target's View of the PCI Bus

FRAM E#

ADDRESSAD ATTR DATA-0 DATA-1 DATA-2 DATA-3 DATA-4 DATA-5 DATA-6 DATA-7

BUS CMDC/BE# ATTR BE#'s = FFh

IRDY#

TRDY#

DEVSEL#

FRAM E#

IRDY#

AD ADDRESS ATTR

BUS CMD ATTRC/BE# BE#'s = FFh

s1_TRDY#

s1_DEVSEL#

s1_FRAM E#

s1_AD ADDRESS ATTR

BUS CMD ATTRs1_C/BE#

s1_IRDY#

AD DATA-0 DATA-1 DATA-2 DATA-3 DATA-4 DATA-5 DATA-6 DATA-7

TRDY#

DEVSEL#

s1_AD DATA-0 DATA-1 DATA-2 DATA-3 DATA-4 DATA-5 DATA-6 DATA-7

Figure 2-5: Burst Memory Read Transaction with No Target Initial Wait States

Revision 1.0b

58

Figure 2-6 shows a similar transaction with minimum DEVSEL# decode timing but with
only six data phases and an initial target latency of five clocks (two wait states).

���

���

PCI_CLK

1 2 3 4 5 6 7 8 9 10 11

Initiator Signals
T erm ination

2 Clocks before
End of T ransaction

12 13 14

PCI Bus

Initiator's View of the PCI Bus

Bus
T ransaction

T arget Initial
W ait State

Decode
Speed A

15

D
ata

T
ran

sfer

D
ata

T
ran

sfer

D
ata

T
ran

sfer

D
ata

T
ran

sfer

D
ata

T
ran

sfer

D
ata

T
ran

sfer

Target's View of the PCI Bus

DEVSEL#

TRDY#

DATA-0 DATA-1 DATA-2 DATA-3 DATA-4 DATA-5AD

s1_IRDY#

BUS CMD ATTRs1_C/BE#

ADDRESS ATTRs1_AD

s1_FRAM E#

s1_DEVSEL#

s1_TRDY#

C/BE# BUS CMD ATTR BE#'s = FFh

DATA-0 DATA-1 DATA-2 DATA-3 DATA-4 DATA-5s1_AD

IRDY#

FRAM E#

DEVSEL#

TRDY#

IRDY#

ADDRESSAD

���
DATA-0 DATA-1 DATA-2ATTR DATA-3 DATA-4 DATA-5

FRAM E#

BUS CMDC/BE# ATTR BE#'s = FFh

AD ADDRESS ATTR

Figure 2-6: Burst Memory Read Transaction with Target Initial Wait States

Revision 1.0b

59

2.7. DWORD Transactions

A DWORD transaction is any transaction that uses one of the following commands:

• Interrupt Acknowledge

• Special Cycle

• I/O Read

• I/O Write

• Configuration Read

• Configuration Write

• Memory Read DWORD

DWORD transactions always have a single data phase and affect no more than a single
DWORD. DWORD transactions do not include a byte count.

DWORD transactions must be initiated as 32-bit transfers. (REQ64# must be
deasserted.) They do not use the upper bus halves (AD[63::32], C/BE[7::4]#, PAR64)
even when initiated by 64-bit devices.

DWORD transactions include explicit byte enables in the Requester Attributes. A byte is
not affected by the transaction in any way if its byte enable is not asserted. All byte
enable patterns are permitted, including no byte enables asserted. For I/O and DWORD
memory transactions, AD[1::0] must correspond to the first byte enable asserted as
specified in Section 2.3. The device that sources the data is required to drive all bits of
the AD[31::00] bus during the data phase, even if some byte enables are deasserted. The
value of the data driven on all the byte lanes is included in the generation of bus parity,
even if some of the byte enables are deasserted. The C/BE# bus is reserved and driven
high by the initiator after the attribute phase of all DWORD transactions.

All target terminations are permitted on DWORD transactions (see Section 2.11.2).

2.7.1. DWORD Memory and I/O Transactions

Memory transactions using the Memory Read DWORD command and I/O transactions
are DWORD transactions. (Other DWORD transactions are discussed separately.)

Figure 2-7 shows an I/O write transaction for which the target signals Data Transfer (an
Immediate Transaction). In this figure, the target does not insert any wait states,
signaling Data Transfer on clock 6. As in conventional PCI, data is transferred when
TRDY#, IRDY#, and DEVSEL# are asserted. However, the initiator continues driving
the AD[31::00] and C/BE[3::0]# buses, and FRAME# and IRDY# remain asserted in
clock 7, one clock past the end of the data phase. (A burst write with a single data phase
looks identical.)

Revision 1.0b

60

PCI_CLK

1 2 3 4 5 6 7 8 9 10

ADDRESSAD[31::00] ATTR DATA-0

�� ��BUS CM DC/BE[3::0]# ATTR ��
FRAM E#

IRDY#

TRDY#

DEVSEL#

BE#'s = Fh

Figure 2-7: DWORD Write Transaction with No Wait States and Data Transfer

Figure 2-8 shows a DWORD read in which data is transferred (an Immediate
Transaction). In this figure, the target inserts two wait states at clocks 6 and 7, then
signals Data Transfer on clock 8. As in conventional PCI, data is transferred when
TRDY#, IRDY#, and DEVSEL# are asserted. However, the initiator continues driving
the C/BE# bus, and FRAME# and IRDY# remain asserted in clock 9, one clock past the
end of the data phase. (A burst read with a single data phase and two initial wait states
looks identical.)

���
PCI_CLK

1 2 3 4 5 6 7 8 9 10 11 12

ADDRESSAD[31::00] ATTR DATA-0

BUS CM DC/BE[3::0]# ATTR ��
FRAM E#

IRDY#

TRDY#

DEVSEL#

BE#'s = Fh

Figure 2-8: DWORD Read with Two Target Initial Wait States and Data Transfer

2.7.2. Configuration Transactions

As in conventional PCI, a Type 0 configuration transaction executes on a single bus
segment and does not cross a PCI-X bridge. It must be claimed by a completer on that
bus segment or terminated with Master-Abort. Type 1 configuration transactions cross
PCI-X bridges and are converted to Type 0 configuration transactions or Special Cycle
transactions the same as in conventional PCI.

In most respects, transactions using the Configuration Read and Configuration Write
commands are the same as other DWORD transactions, however, they differ in two
requirements. First, their timing is different in that the initiator drives the address on the
AD[31::0] bus before it asserts FRAME#. Second, additional information is driven in

Revision 1.0b

61

the attribute phase of Type 0 configuration transactions. The following sections describe
these requirements in more detail.

2.7.2.1. Configuration Transaction Timing

PCI-X initiators are required to drive the address of all configuration transactions on the
AD[31::00] bus four clocks before asserting FRAME#. This allows additional
propagation time for the IDSEL input signal for Type 0 configuration transactions. In
those systems in which the IDSEL inputs are tied to AD bits, this allows time for the
signal to rise through a series resistor on the system board. In those systems in which the
IDSEL inputs are driven from separate outputs from the source bridge, this allows time
for the signal to propagate from the AD bus through the source bridge to the IDSEL pins,
if the requester is a device other than the source bridge. Timing for Type 1 configuration
transactions is the same as Type 0, even though IDSEL is used only for Type 0. Once
FRAME# is asserted, the rest of the transaction proceeds like any other DWORD
transaction.

Figure 2-9 and Figure 2-10 illustrate a PCI-X Configuration Write transaction and a
Configuration Read transaction respectively. Both figures show DEVSEL# decode
timing A with two target initial wait states. All other DEVSEL# decode speeds and
initial wait state combinations are also valid for configuration transactions. Transactions
(both read and write) must not affect registers if that register’s byte enable is deasserted.

Figure 2-9 and Figure 2-10 illustrate IDSEL valid at clock 7 with a valid configuration
command. This is the IDSEL input of the device addressed by a Type 0 configuration
transaction. The state of IDSEL at any other clock and during Type 1 configuration
transactions must be ignored by the target.

As for all transactions, GNT# must be asserted in clock N-2 for the device to start a
configuration transaction on clock N. (See Section 4.1 for a discussion of the arbiter.)
However, for arbitration purposes, the bus appears idle while a device is driving the AD
bus before asserting FRAME# for a configuration transaction. If the arbiter asserts
GNT# to a device on clock N-2, the device starts driving the bus for a configuration
transaction (on clock N, N+1, or N+2), and the arbiter deasserts GNT# before clock N+3,
the device must not continue the configuration transaction. It must float the bus two
clocks after GNT# is deasserted. In the following figures, this means that if the arbiter
deasserts GNT# before clock 6, the device must discontinue the configuration
transaction.

PCI_CLK

TRDY#

IRDY#

FRAME#

C/BE[3::0]#

AD[31::00]

IDSEL

DEVSEL#

2 3 4 5 6 7 8 9 10 11 12 13 14 15

����BUS CMD ATTR �ADDRESS DATA-0ATTR� �

161

BE#'s = F

Figure 2-9: Configuration Write Transaction

Revision 1.0b

62

PCI_CLK

DEVSEL#

TRDY#

IRDY#

FRAM E#

C/BE[3::0]#

AD[31::00]

IDSEL

��
��

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

����
BUS CMD ATTR

�
ADDRESS DATA-0ATTR

1

BE#'s = Fh

Figure 2-10: Configuration Read Transaction

2.7.2.2. Configuration Transaction Address and Attributes

PCI-X devices use Type 0 Configuration Write transactions to semi-automatically
program their Bus Number and Device Number fields in the PCI-X Status register (see
Section 7.2.4). PCI-X devices use the contents of these registers in the attribute fields of
all transactions they initiate. To program these registers, all Type 0 configuration
transactions (both read and write) include additional information in their address and
attribute phases.

Figure 2-11 shows the format of the address for both Type 0 and Type 1 configuration
transactions. The format for the conventional PCI Type 0 address is included for
reference. Notice that the Device Number field is required both for Type 0 and Type 1
PCI-X configuration transactions. In Type 0 configuration transactions, bridges
(including host bridges) not only drive the Device Number field during the address phase,
but also decode the Device Number field and assert a single address bit in the range
AD[31::16] during the address phase (for device numbers in the range 0 0000b-0 1111b)
according to Table 2-7. (The target device updates the Bus Number and Device Number
fields in its PCI-X Status register on every Configuration Write transaction. See
Section 7.2.4.) The single bit enables the system designer to connect a different address
bit to the IDSEL input of each device. The source bridge is not required to connect the
IDSEL pins to AD bits electrically. For example, the source bridge is permitted to use
separate output pins for individual IDSEL signals. However, the source bridge must
guarantee that these pins are driven to the proper states with sufficient setup time during
Type 0 configuration transactions from any initiator on the bus.

Revision 1.0b

63

BUS CM D

PCI 2.2 Type 1 to Type 0 Configuration Address (ref)

C/BE[3::0]#

BUS CM D

C/BE[3::0]#

Type 1

See PCI 2.2 Specification Function
Number

Register Num ber

0001020708101131

0 0

AD[31::00]

Type 0

3 0

3 0

PCI-X Type 1 to Type 0 Configuration Address

Reserved Bus Num ber Dev ice Number
Function
Number

Register
NumberBUS CM D

000102070810111516232431

C/BE[3::0]#

0 1

Type 1

See Table Dev ice Number
Function
Number

Register
NumberBUS CM D

00010207081011151631

C/BE[3::0]#

0 0

Type 0

AD[31::00]

AD[31::00]

3

3

0

0

Reserved Bus Num ber Dev ice Number Function
Number Register Num ber

000102070810111516232431

0 1

AD[31::00]

Figure 2-11: Configuration Transaction Address Format

Table 2-7: IDSEL Generation

Device
Number

Address AD[31::16]

0 0000b 0000 0000 0000 0001b
0 0001b 0000 0000 0000 0010b
0 0010b 0000 0000 0000 0100b
0 0011b 0000 0000 0000 1000b
0 0100b 0000 0000 0001 0000b
0 0101b 0000 0000 0010 0000b
0 0110b 0000 0000 0100 0000b
0 0111b 0000 0000 1000 0000b
0 1000b 0000 0001 0000 0000b
0 1001b 0000 0010 0000 0000b
0 1010b 0000 0100 0000 0000b
0 1011b 0000 1000 0000 0000b
0 1100b 0001 0000 0000 0000b
0 1101b 0010 0000 0000 0000b
0 1110b 0100 0000 0000 0000b
0 1111b 1000 0000 0000 0000b
1 xxxxb 0000 0000 0000 0000b

Revision 1.0b

64

Figure 2-12 shows the format of the Requester Attributes that are driven during the
attribute phase of all Type 0 configuration transactions. (Type 1 configuration
transactions use the standard DWORD format for the Requester Attributes described in
Section 2.5.) The Requester Attributes for Type 0 configuration transactions are identical
to Requester Attributes for other DWORD transactions except that bits 7-0 contain the
Secondary Bus Number field. (The figure also shows the No Snoop and Relaxed
Ordering bits as reserved, since the initiator is permitted to set these bits only for memory
transactions. See Section 2.5.) The Secondary Bus Number field contains the number of
the bus on which the Type 0 configuration transaction is executing. As in all Requester
Attributes, the Requester Bus Number is the number of the bus on which the
configuration transaction originated. If the transaction originated as a Type 1
configuration transaction and was converted to a Type 0 by a PCI-X bridge, the
Requester Bus Number and the Secondary Bus Number are different. In this case, the
PCI-X bridge inserts the contents of its Secondary Bus Number register in the Secondary
Bus Number field of the Requester Attributes, when it converts the Type 1 transaction to
a Type 0.

Secondary Bus Number
Requester

Bus
Num ber

Requester
Dev ice

Num ber

Requester
Function
Num ber

Tag

00070810111516232431

RRR

282930

Byte Enables

3235

AD[31::00]C/BE#[3::0]

Figure 2-12: Type 0 Configuration Transaction Requester Attribute Bit
Assignments

2.7.3. Special Cycle Transactions

The Special Cycle command provides a simple message broadcast mechanism in PCI-X
mode the same as in conventional PCI mode. Devices that support Special Cycle
commands monitor only for the command code on C/BE[3::0]# during the address phase
to detect a Special Cycle command. Such devices are permitted also to utilize the PCI-X
attribute fields to further define the transaction.

In PCI-X mode, Special Cycle transactions are DWORD write transactions (only one
data phase) with no initiator wait states (unlike conventional PCI that allowed initiator
wait states). As in conventional PCI, the value on AD[31::00] during the address phase
is not an address and no device asserts DEVSEL# (devices disable comparison to Base
Address registers when C/BE[3::0]# contain the Special Cycle command value).
Master-Abort is the normal termination of Special Cycle transactions and no error is
reported for this case of Master-Abort termination. See Figure 2-13.

Special Cycle transactions use the DWORD requester attributes illustrated in Figure 2-2,
and all byte enables are asserted, as they are in conventional PCI.

Like conventional PCI, AD[31::00] during the data phase contain the message type and
an optional data field. The message is encoded on AD[15::00] and the optional data
field on AD[31::16]. Message types for PCI-X are the same as for conventional PCI
(see PCI 2.2 Appendix A).

As in conventional PCI, all devices are permitted to initiate Special Cycle transactions.
Special Cycle transactions affect only those devices on one bus segment. Bridges do not
forward Special Cycles. If an initiator desires to generate a Special Cycle transaction on
a specific bus in the hierarchy, it must use a Type 1 Configuration Write transaction to do
so. Type 1 Configuration Write transactions transverse PCI-X bridges in both directions
for the purpose of generating Special Cycle commands on any bus in the hierarchy.

Revision 1.0b

65

Type 1 Configuration Write transactions are converted to Special Cycle transactions by
PCI-X bridges the same in PCI-X mode as they are in conventional mode. If a Type 1
Configuration Write contains a Device Number of all ones, a Function Number of all
ones, and a Register Number of all zeros, the PCI-X bridge that forwards the transaction
to the appropriate bus converts the command on C/BE[3::0]# from Configuration Write
to Special Cycle and drives address bits AD[31::16] to zeros (no IDSEL is asserted).

The same optional methods for software to generate a Special Cycle transaction are
available in PCI-X mode as defined in PCI 2.2 for conventional mode.

PCI_CLK

1 2 3 4 5 6 7 8 9 10

��
��AD[31::00] ATTR

�����
�����DATA-0

��
��

BUS CMDC/BE[3::0]# ATTR

FRAM E#

IRDY#

TRDY#

DEVSEL#

11 12

��
��
��

BE#'s = Fh

Figure 2-13: Special Cycle

2.7.4. Interrupt Acknowledge Transactions

An Interrupt Acknowledge transaction appears on the bus in PCI-X mode the same as
DWORD memory or I/O read transactions, except the command is Interrupt
Acknowledge. As in conventional PCI, the Interrupt Acknowledge has no address, so the
initiator drives any value on the AD[31::00] bus during the address phase. As for all
other DWORD transactions, the initiator includes the appropriate byte enables in the
Requester Attributes, and C/BE[3::0]# are reserved and driven high during the data
phase. DEVSEL#, wait state, target termination, and Split Transaction requirements are
the same as for other DWORD transactions.

Revision 1.0b

66

2.8. Device Select Timing

PCI-X targets are required to claim transactions by asserting DEVSEL# and leaving
TRDY# and STOP# deasserted, using decode A, B, C, or Subtractive as shown in
Table 2-8 and Figure 2-14. Conventional DEVSEL# timing is shown in the table for
reference.

Table 2-8: DEVSEL# Timing

Decode Speed PCI-X Conventional PCI (ref)
1 clock after address
phase(s)

Not Supported Fast

2 clocks after address
phase(s)

Decode A Medium

3 clocks after address
phase(s)

Decode B Slow

4 clocks after address
phase(s)

Decode C Subtractive

5 clocks after address
phase(s)

N/A N/A

6 clocks after address
phase(s)

Subtractive N/A

PCI_CLK

1 2 3 4 5 6 7 8 9 10

DEVSEL#
Decode A Decode B Decode C Subtractive

IRDY#

FRAM E#

Figure 2-14: DEVSEL# Timing

If the transaction uses a dual address cycle, the decode speeds are measured from the
second address phase. If no target asserts DEVSEL# within the Subtractive decode time,
the initiator ends the transaction as a Master-Abort.

After a target asserts DEVSEL#, it must complete the transaction with one or more data
phases by signaling one or more of the following: Split Response, Target-Abort, Single
Data Phase Disconnect, Wait State, Data Transfer, Retry, or Disconnect at Next ADB.

2.8.1. Writes and Split Completions

The figures in this section illustrate device select timing using burst write transactions
with four data phases. Split Completion transaction timing is identical to the burst write
transactions shown. Burst transactions of different length and DWORD transactions use
the same device select timing.

Revision 1.0b

67

The figures illustrate that the initiator advances to the second data value of the burst two
clocks after the target asserts DEVSEL# (see Section 2.9.2 for the effects of wait states
on burst write data). For DWORD write transactions, there is only one data value, which
remains constant from the second clock after the attribute phase until the end of the
transaction.

PCI_CLK

1 2 3 4 5 6 7 8 9 10 11

ADDRESSAD ATTR DATA-0 DATA-1 DATA-2 DATA-3

�
�

BUS CM DC/BE# BE#'s-0ATTR BE#'s-1 BE#'s-2 BE#'s-3

FRAM E#

IRDY#

TRDY#

DEVSEL#

Figure 2-15: Burst Write with DEVSEL# Decode A and No Initial Wait States

PCI_CLK

1 2 3 4 5 6 7 8 9 10 11 12

ADDRES SAD ATTR DATA-0 DATA-1 DATA-2 DATA-3

��BUS CM DC/BE# BE #'s-0ATTR BE #'s-1 BE #'s-2 BE #'s-3

FRAM E#

IRDY#

TRDY#

DEVSEL#

Figure 2-16: Burst Write with DEVSEL# Decode B and No Initial Wait States

PCI_CLK

1 2 3 4 5 6 7 8 9 10 11 12 13

ADDRE SSAD ATTR DATA-0 DATA-1 DATA-2 DATA-3

��BUS C MDC/BE# BE #'s-0ATTR BE #'s-1 BE #'s-2 BE #'s-3

FRAM E#

IRDY#

TRDY#

DEVSEL#

Figure 2-17: Burst Write with DEVSEL# Decode C and No Initial Wait States

Revision 1.0b

68

PCI_CLK

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

DEVSEL#

TRDY#

IRDY#

FRAM E#

BUS CMDC/BE# BE#'s-0ATTR BE#'s-1 BE#'s-2 BE#'s-3

ADDRESSAD ATTR DATA-0 DATA-1 DATA-2 DATA-3�

Figure 2-18: Burst Write with Subtractive DEVSEL# Decode and No Initial Wait
States

2.8.2. Reads

The figures in this section illustrate device select timing using burst read transactions in
which the target signaled Data Transfer for four data phases. Burst transactions of
different lengths and DWORD transactions use the same device select timing.

The figures illustrate that for a burst read transaction, the C/BE# bus is reserved and
driven high after the attribute phase, which is also true for DWORD transactions. The
AD bus is shown floating during the target response phase after the turn-around clock,
but is also permitted to be driven to any value by the target once the target has decoded
its address (after the turn-around clock).

PCI_CLK

1 2 3 4 5 6 7 8 9 10 11

ADDRESSAD ATTR DATA-0 DATA-1 DATA-2 DATA-3

BUS CM DC/BE# ATTR BE#'s = FFh

FRAM E#

IRDY#

TRDY#

DEVSEL#

Figure 2-19: Burst Read with DEVSEL# Decode A and No Initial Wait States

Revision 1.0b

69

PCI_CLK

1 2 3 4 5 6 7 8 9 10 11 12

DEVSEL#

TRDY#

IRDY#

FRAM E#

BUS CM DC/BE# ATTR BE #'s = FFh

ADDRES SAD ATTR DATA-0 DATA-1 DATA-2 DATA-3

Figure 2-20: Burst Read with DEVSEL# Decode B and No Initial Wait States

PCI_CLK

1 2 3 4 5 6 7 8 9 10 11 12 13

ADDRES SAD ATTR DATA-0 DATA-1 DATA-2 DATA-3

C/BE# BUS CM D ATTR BE #'s = FFh

FRAM E#

IRDY#

DEVSEL#

TRDY#

Figure 2-21: Burst Read with DEVSEL# Decode C and No Initial Wait States

PCI_CLK

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

DEVSEL#

TRDY#

IRDY#

FRAM E#

BUS CMDC/BE# ATTR BE#'s = FFh

ADDRESSAD ATTR DATA-0 DATA-1 DATA-2 DATA-3

Figure 2-22: Burst Read with Subtractive DEVSEL# Decode and No Initial Wait
States

Revision 1.0b

70

2.9. Wait States

PCI-X initiators are not permitted to insert wait states. Initiators are required to assert
IRDY# two clocks after the attribute phase. The initiator must drive write data and must
be prepared to accept read data when IRDY# is asserted. After IRDY# is asserted, it
must remain asserted until the end of the transaction.

PCI-X targets are permitted to insert wait states only on the initial data phase. If the
transaction has more than one data phase, the target must not signal Wait State (see
Section 2.11.2) after it has signaled anything else on a data phase. Targets are permitted
to insert initial wait states only in pairs of clocks for burst write and Split Completion
transactions for which data transfers (the target signals Data Transfer, Disconnect at Next
ADB, or Single Data Phase Disconnect). (Pairs of wait states are necessary to allow the
initiator to toggle between the first and second data patterns, as described in
Section 2.9.2.) For these transactions, the target must signal Wait State an even number
of times (zero or more) after asserting DEVSEL# (up to the maximum specified below).
For all other transactions (including burst write and split completion transactions for
which the target signals Retry or Target-Abort), the target is permitted to signal Wait
State any number of times (zero or more) after asserting DEVSEL# (up to the maximum
specified below).

2.9.1. Target Initial Latency

As defined in PCI 2.2, target initial latency is measured from the clock in which the
initiator asserts FRAME# to the clock in which the target signals something other than
Wait State. Table 2-9 shows the target initial latency for all the combinations of
DEVSEL# timing, numbers of address phases, and numbers of wait states.

Table 2-9: Target Initial Latency

Single Address Cycle Dual Address Cycle
DEVSEL# Timing DEVSEL# Timing

Wait
states

A B C Sub A B C Sub

0 3 4 5 7 4 5 6 8
1 4 5 6 8 5 6 7 9
2 5 6 7 9 6 7 8 10
3 6 7 8 10 7 8 9 11
4 7 8 9 11 8 9 10 12
5 8 9 10 12 9 10 11 13
6 9 10 11 13 10 11 12 14
7 10 11 12 14 11 12 13 15
8 11 12 13 15 12 13 14 16
9 12 13 14 16 13 14 15 N/A
10 13 14 15 N/A 14 15 16 N/A
11 14 15 16 N/A 15 16 N/A N/A
12 15 16 N/A N/A 16 N/A N/A N/A
13 16 N/A N/A N/A N/A N/A N/A N/A

The maximum number of initial wait states the target is permitted to insert depends upon
how the target terminates the transaction. If the target signals Split Response or Retry,
the target must do so within eight clocks of the assertion of FRAME#. If the target

Revision 1.0b

71

signals Target-Abort in the first data phase for reasons other than an error that prevents
transferring the first data, the target must do so within eight clocks of the assertion of
FRAME#. These cases are outlined with a heavy line in Table 2-9. If the target signals
Single Data Phase Disconnect, or signals Data Transfer or Disconnect at Next ADB in
the first data phase, the target must do so within 16 clocks of the assertion of FRAME#.
If the target intends to signal Single Data Phase Disconnect, Data Transfer, or Disconnect
at Next ADB but an error condition prevents it from transferring the data for the first data
phase, the target is permitted to signal Target-Abort within 16 clocks of the assertion of
FRAME#. Unlike conventional PCI, all PCI-X targets (including the host bridge) are
subject to the same target initial latency limits.

PCI-X devices are exempt from the target initial latency requirements in the following
cases:

• The device initialization time after the rising edge of RST# (Trhfa specified in

Table 9-5) has not elapsed. As in conventional PCI, the device is permitted to ignore
such a transaction or to assert DEVSEL# and signal Wait State or Retry until the end
of the initialization time.

• System power-up initialization software is copying an expansion ROM image from
the device into system memory. No upper limit is specified for target initial latency
for such transactions.

Implementation Note: Expansion ROM Accesses after a Hot-
Insertion Event

As described in PCI HP 1.0, most operating systems do not permit the execution of
software in expansion ROMs after a hot insertion event. Expansion ROM software is
generally created to execute only at system initialization time. If a device requires access
to its expansion ROM after the device is hot-inserted, the device must comply with the
target initial latency limits for those transactions.

PCI-X devices have similar options to those defined in PCI 2.2 for meeting the target
initial latency for transactions other than Split Completions. See Section 2.13 for
additional requirements for Split Completions.

Option 1: The device always transfers data within the target initial latency limits listed
in Table 2-9. (Same as PCI 2.2 except the latency limit is lower for some target
terminations.)

Option 2: The device normally transfers data within the target initial latency limit listed
in Table 2-9, but under some conditions that are guaranteed to resolve quickly, execution
of the transaction would take longer. Under these conditions, the device is permitted to
signal Retry within the limits listed in Table 2-9. If the initiator repeats the transaction,
and the transaction is a memory write or an I/O Write, the device must complete the
transaction with something other than Retry within the Maximum Completion Time
specified in Section 2.13. (Same as PCI 2.2 except the latency limit is lower.)

Option 3: The device frequently cannot transfer data within the target initial latency
limit in Table 2-9. The device must signal Split Response and execute the transaction as
a Split Transaction. (Split Transactions in PCI-X replace Delayed Transactions in
conventional PCI.)

Revision 1.0b

72

Implementation Note: Minimizing the Use of Wait States and Retry

It is recommended that devices minimize the target initial latency. Device designers are
encouraged to use the minimum device select decode time and never to insert wait states.
If wait states cannot be avoided, the number of wait states must be kept to a minimum. If
large numbers of wait states are required, executing the transaction as a Split Transaction
generally provides more efficient use of the bus. Even in high-frequency systems with
few (maybe only one) slots on the bus, Split Transactions allow multi-threaded devices
(e.g., multiple devices behind a PCI-X bridge) to issue multiple transactions concurrently.

Devices are encouraged never to signal Retry. If a temporary condition prevents the
device from executing the transaction, signaling Retry is acceptable if there is a high
probability that the device will be able to execute the transaction within the target initial
latency limit if the initiator repeats the transaction later. If the device frequently cannot
transfer data within the limits shown in Table 2-9, executing the transaction as a Split
Transaction generally provides more efficient use of the bus.

In most cases, there is no guarantee that the initiator will repeat a transaction terminated
with Retry. (Completers are always obligated to send data for the full byte count or send
a Split Completion Message. Bridges are obligated to forward certain transactions.)
Delayed Transactions are not supported in PCI-X.

2.9.2. Wait States on Writes and Split Completions

For write and Split Completion transactions, the initiator must drive data on the AD bus
two clocks after the attribute phase. If the transaction is a burst with more than one data
phase, the initiator advances to the second data value two clocks after the target asserts
DEVSEL#. If the target also inserts wait states, the initiator must toggle between its first
and second data values until the target signals something other than Wait State. See
Section 2.12.3 for requirements for a 64-bit initiator to copy data from the upper to the
lower bus half to support writing to 32-bit targets. If the target signals Data Transfer,
Disconnect at Next ADB, or Single Data Phase Disconnect, it must do so an odd number
of clocks after it asserts DEVSEL#. If the transaction has a third data value, the initiator
advances to it two clocks after the target signals Data Transfer for the first data phase.

The starting address and byte count of some burst transactions is such that the transaction
has only a single data phase. If the target inserts wait states on such a burst write
transaction, the initiator is permitted to drive any value for the second data pattern.

For DWORD write transactions, the initiator drives the single data value on the
AD[31::00] bus two clocks after the attribute phase and holds it there until the end of the
transaction regardless of DEVSEL# timing and target initial wait states.

Revision 1.0b

73

Figure 2-23 shows a write transaction with four data phases and two wait states. With
minimum device select decode timing, the initiator advances immediately from DATA-0
to DATA-1. But since the target did not assert TRDY# in clock 6, neither DATA-0 nor
DATA-1 were transferred, and the initiator repeats them in clocks 8 and 9. Since the
target asserted TRDY# in clock 8, the initiator advances to DATA-2 in clock 10.

1 2 3 4 5 6 7 8 9 10 11 12 13

DEVSEL#

TRDY#

IRDY#

FRAM E#

BUS C MDC/BE# BE #'s-0ATTR BE #'s-1 BE #'s-0 BE #'s-1 BE #'s-2 BE #'s-3

PCI_CLK

ADDRE SSAD ATTR DATA-2 DATA-3�� DATA-0 DATA-1DATA-0 DATA-1

Figure 2-23: Burst Write Transaction with DEVSEL# Decode A and Two Initial
Wait States

Figure 2-24 shows a similar transaction with four target initial wait states. The initiator
toggles DATA-0 and DATA-1 at clocks 6, 7, 8, and 9, until the target asserts TRDY# at
clock 10.

PCI_CLK

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ADDRESSAD ATTR DATA-2 DATA-3� DATA-0 DATA-1DATA-0 DATA-1 DATA-0 DATA-1

BUS CMDC/BE# BE#'s-0ATTR BE#'s-1 BE#'s-0 BE#'s-1 BE#'s-0 BE#'s-1 BE#'s-2 BE#'s-3

IRDY#

TRDY#

DEVSEL#

FRAM E#

Figure 2-24: Burst Write Transaction with DEVSEL# Decode A and Four Initial
Wait States

The following sequence of figures shows the effects of longer device select decode
timing and wait states on the initiator of a burst write. Figure 2-25 and Figure 2-26 show
device select timing B, and Figure 2-27 and Figure 2-28 shows timing C. In each case,
the initiator advances to DATA-1 two clocks after the target asserts DEVSEL#, but
toggles between DATA-0 and DATA-1 and does not advance to DATA-2 until two
clocks after the target asserts TRDY#. Since the target asserts DEVSEL# later in these
cases, the initiator drives DATA-0 for more than one clock.

Revision 1.0b

74

Implementation Note: Device Select Timing A and B and Wait States
on Burst Write Transactions

The target is permitted to insert wait states on burst write and Split Completion
transactions only in pairs of clocks (for transactions that successfully transfer data).
Therefore, device select decode speed B with no initial wait states is faster than a device
select decode of A with the next fewer number (two) of target initial wait states. See
Table 2-9.

PCI_CLK

1 2 3 4 5 6 7 8 9 10 11 12 13 14

ADDRESSAD ATTR DATA-0 DATA-1 DATA-2 DATA-3�� DATA-1 DATA-0

BUS CMDC/BE# BE#'s-0ATTR BE#'s-1 BE#'s-2 BE#'s-3BE#'s-1 BE#'s-0

FR AM E#

IRDY#

TR DY#

DEVSEL#

Figure 2-25: Burst Write Transaction with DEVSEL# Decode B and Two Initial
Wait States

PCI_CLK

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ADDRESSAD ATTR DATA-0 DATA-1 DATA-2 DATA-3

��
DATA-1 DATA-0DATA-1DATA-0

BUS CMDC/BE# BE#'s-0ATTR BE#'s-1 BE#'s-2 BE#'s-3BE#'s-1 BE#'s-0BE#'s-1BE#'s-0

FRAM E#

IRDY#

TRDY#

DEVSEL#

Figure 2-26: Burst Write Transaction with DEVSEL# Decode B and Four Initial
Wait States

PCI_CLK

1 2 3 4 5 6 7 8

DEVSEL#

TRDY#

IRDY#

FRAM E#

BUS CMDC/BE# BE#'s-0ATTR

ADDRESSAD ATTR DATA-0�
9 10 11 12 13 14 15

BE#'s-1 BE#'s-2 BE#'s-3BE#'s-0BE#'s-1

DATA-1 DATA-2 DATA-3DATA-0DATA-1

Figure 2-27: Burst Write Transaction with DEVSEL# Decode C and Two Initial
Wait States

Revision 1.0b

75

PCI_CLK

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

DEVSEL#

TRDY#

IRDY#

FRAM E#

BU S CM DC/BE# BE#'s-0ATTR BE#'s -1 BE#'s -2 BE#'s -3BE#'s -1 BE#'s -0BE#'s -1BE#'s -0

ADD RESSAD ATTR DATA-0 DATA-1 DATA-2 DATA-3�� DATA-1 DATA-0DATA-1DATA-0

Figure 2-28: Burst Write Transaction with DEVSEL# Decode C and Four Initial
Wait States

Figure 2-29 and Figure 2-30 show the effects of device select timing and wait states on
DWORD write transactions. In both figures, the initiator drives the single write data
value two clocks after the attributes and keeps driving it until the end of the transaction.

PCI_CLK

1 2 3 4 5 6 7 8 9 10 11 12

DEVSEL#

TRDY#

IRDY#

FRAM E#

BUS CM DC/BE[3::0]# ATTR

��
��ADDRESSAD[31::00] ATTR�� DATA-0 ��

BE#'s = Fh

Figure 2-29: DWORD Write Transaction with DEVSEL# Decode A and Two Initial
Wait States

PCI_CLK

1 2 3 4 5 6 7 8 9 10 11 12 13 14

DEVSEL#

TRDY#

IRDY#

FRAM E#

BUS CMD ATTRC/BE[3::0]#

��
ADDRE SS ATTR� DATA-0AD[31::00] ��

BE#'s = Fh

Figure 2-30: DWORD Write Transaction with DEVSEL# Decode C and Two Initial
Wait States

Revision 1.0b

76

2.9.3. Wait States on Reads

On a read transaction, the target is permitted to insert any number of initial wait states up
to the maximum specified in Section 2.9.1. (Wait states are not required to be inserted in
pairs for read transactions.)

The following figures show some of the possible combinations of DEVSEL# timing and
wait states to illustrate how they effect the way the target drives the AD bus during the
data phase. Figure 2-31 through Figure 2-35 show burst read transactions in which data
is transferred (Immediate Transactions). Figure 2-36 and Figure 2-37 show DWORD
read transactions in which data is transferred (Immediate Transactions). Transactions
that the target ends with Split Response, Retry, and Single Data Phase Disconnect begin
the same as shown below but end as shown in Section 2.11.2. Figures with DEVSEL#
decode time other than A show the AD bus floating during the target response phase after
the turn-around clock. In these cases, the AD bus is also permitted to be driven to any
value by the target once the target has decoded its address (after the turn-around clock).

PCI_CLK

1 2 3 4 5 6 7 8 9 10 11 12

DEVSEL#

TRDY#

IRDY#

FRAM E#

ADDRES SAD ATTR ���DATA-0 DATA-1 DATA-2 DATA-3

BUS CM DC/BE# ATTR BE #'s = FFh

Figure 2-31: Burst Read Transaction with DEVSEL# Decode A and One Initial
Wait State

PCI_CLK

1 2 3 4 5 6 7

DEVSEL#

TRDY#

IRDY#

BUS CM DC/BE# ATTR BE #'s = FFh

ADDRES SAD ATTR

���
���

FRAM E#

8 9 10 11 12 13

DATA-0 DATA-1 DATA-2 DATA-3

Figure 2-32: Burst Read Transaction with DEVSEL# Decode A and Two Initial
Wait States

Revision 1.0b

77

PCI_CLK

1 2 3 4 5 6 7 8 9 10 11 12 13 14

DEVSEL#

TRDY#

IRDY#

BUS CMDC/BE# ATTR BE#'s = FFh

ADDRESSAD ATTR����DATA-0 DATA-1 DATA-2 DATA-3

FRAM E#

Figure 2-33: Burst Read Transaction with DEVSEL# Decode A and Three Initial
Wait States

����
PCI_CLK

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FRAM E#

IRDY#

TRDY#

DEVSEL#

ADDRESSAD ATTR DATA-0 DATA-1 DATA-2 DATA-3

BUS CMDC/BE# ATTR BE#'s = FFh

Figure 2-34: Burst Read Transaction with DEVSEL# Decode A and Four Initial
Wait States

PCI_CLK

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

DEVSEL#

TRDY#

IRDY#

FRAM E#

ADDRESS ATTR DATA-2 DATA-3

���
DATA-0 DATA-1AD

BUS CMD ATTRC/BE# BE#'s = FFh

Figure 2-35: Burst Read Transaction with DEVSEL# Decode C and Two Initial
Wait States

Revision 1.0b

78

���
���

PCI_CLK

1 2 3 4 5 6 7 8 9 10 11 12

ADDRESSAD[31::00] ATTR DATA-0

BUS CMDC/BE[3::0]# ATTR

��FRAM E#

IRDY#

TRDY#

DEVSEL#

BE#'s = Fh

Figure 2-36: DWORD Read Transaction with DEVSEL# Decode A and Two Initial
Wait States

PCI_CLK

1 2 3 4 5 6 7 8 9 10 11 12 13 14

DEVSEL#

TRDY#

IRDY#

FRAM E#

ADDRE SS ATTR

���
DATA-0AD[31::00]

BUS CMD ATTRC/BE[3::0]# ��BE #'s = Fh

Figure 2-37: DWORD Read Transaction with DEVSEL# Decode C and Two Initial
Wait States

2.10. Split Transactions

Split Transactions improve bus efficiency for transactions accessing targets that exhibit
long latencies. Split Transactions in PCI-X systems replace Delayed Transactions in
conventional PCI systems. Unlike conventional PCI, the target must not assume the
initiator will repeat a transaction terminated with Retry. (In some cases, the device is
obligated to continue the transaction, but the target must not depend upon the transaction
being repeated verbatim. For example, if a completer encountered an error after a Split
Completion transaction for a burst read that was terminated with Retry, the completer
would be permitted to continue the Sequence with a Split Completion Error rather than
repeating the original Split Completion.)

Revision 1.0b

79

2.10.1. Basic Split Transaction Requirements

A Split Transaction consists of at least two separate bus transactions, a Split Request
initiated by the requester, and one or more Split Completions initiated by the completer.

Transactions using any of the following commands are permitted to use Split
Transactions:

• Memory Read Block

• Alias to Memory Read Block

• Memory Read DWORD

• Interrupt Acknowledge

• I/O Read

• I/O Write

• Configuration Read

• Configuration Write

The target of such a transaction may optionally complete the transaction as a Split
Transaction or may use any other termination method as determined by the rules for those
termination methods. All of these termination alternatives are available regardless of
whether the transaction was previously terminated with Retry. (See Section 2.11.2.5 for
examples of implementations in which the device is unable to respond with Split
Response and signals Target-Abort.) Once the target terminates a read transaction with
Split Response, the target must transfer the entire requested byte count as a Split
Completion (except for error conditions described in Section 2.10.6.2 and Section 8.8).

A Split Transaction begins when the requester initiates a transaction using one of the
commands in the list above. The completer optionally signals Split Response as defined
in Section 2.11.2.4. (PCI-X bridges are required to signal Split Response in some cases.
See Section 8.4.)

Target initial wait states for Split Response termination are allowed up to the limit
specified in Section 2.9.1. A transaction terminated with Split Response is called a Split
Request.

After signaling Split Response, the completer executes the transaction. If the transaction
is a write, the completer updates the bytes specified by the byte enables of the Split
Request. If the transaction is a read, the completer prepares all or some of the bytes
specified by the byte count (for burst reads) or byte enables (for DWORD reads) of the
Split Request. The completer initiates a Split Completion transaction to send the
requested read data or a completion message to the requester. Notice that for a Split
Completion transaction, the requester and the completer switch roles. The completer
becomes the initiator of the Split Completion transaction, and the requester becomes the
target.

A device’s ability to execute a transaction as a Split Transaction is unaffected by the state
of the Bus Master bit in the Command register. A device that is properly addressed by a
transaction is permitted to terminate that transaction with Split Response, request the bus,
and initiate a Split Completion even if its Bus Master bit in the Command register is
cleared.

A Split Transaction is not finished until the requester receives Split Completion
transactions for the entire byte count or a Split Completion Message indicating an error

Revision 1.0b

80

occurred as described in Section 2.10.6.2. A completer that executes Split Transactions
for multiple Sequences concurrently is permitted to execute the transaction and initiate
the Split Completions for different Sequences in any order. (Split Completions for the
same Sequence must be initiated in address order.) As in conventional PCI, if a requester
requires one non-posted transaction to complete before another, it must not initiate the
second transaction until the first one completes.

Implementation Note: Mixing Immediate Response and Split
Response

This note uses the following two terms to explain the limitations when Immediate
Transactions and Split Transactions are used between a single pair of ADBs:

• Immediate-capable: an area of the device’s address space that is capable of
responding within the latency requirements defined in Section 2.9.1 such that the
device executes read transactions as Immediate Transactions.

• Split-only: an area of the device’s address space that cannot respond to read
transactions within the latency requirements defined in Section 2.9.1 and thus the
device must execute them as Split Transactions.

Device designers should use extreme care in mixing immediate-capable and split-only
address spaces. Unless the address map is carefully laid out, the device must either
provide data from the immediate-capable range in a Split Completion or must signal
Target-Abort to some read transactions that would otherwise be legal.

Although requesters are generally required to understand the range limitations of the
devices they address, completers have no ability to regulate the type and length of read
commands that they are addressed by. Therefore the completer must respond to any read
command within its address space. If the device is not designed to provide read data up
to the next ADB as an Immediate Transaction, and the device is not designed to deliver
all the data as a Split Transaction (as defined in Section 2.11.2.4), the device would have
to signal Target-Abort to that read transaction and risk that the system will halt execution
(see Section 2.11.2.5).

Case 1: When an immediate-capable address space precedes a split-only address space
and both spaces are between a single pair of adjacent ADBs, the device is forced either to
support providing the immediate-capable data within a Split Completion, or to signal
Target-Abort for reads that cross those internal boundaries.

Example 1: A device with 128 bytes of memory space assigned through a Base Address
register chooses to use offsets 00h-3Fh for its immediate-capable register set and offsets
40h-7Fh as a window into some split-only memory. The device receives a memory read
transaction for offset 00h with a byte count of 80h. Since the device cannot provide an
immediate completion for offsets 40h-7Fh, the device cannot signal Data Transfer or
Disconnect at Next ADB. Signaling either of these allows the device to disconnect the
transaction no sooner than the next ADB, which is offset 80h. The device also cannot
signal Single Data Phase Disconnect. Signaling Single Data Phase Disconnect for any
read transaction that includes a split-only location is prohibited. (See Section 2.11.2.1.)
The device is permitted to signal Single Data Phase Disconnect only if the read request is
entirely contained within the offsets 00h-3Fh. If the read transaction includes any portion
of the split-only range, the device must either signal Split Response and provide all 128
bytes of valid data in a single Split Completion or signal Target-Abort (and risk that the
system will halt execution).

Example 2: A device with 256 bytes of memory space assigned through a Base Address
register chooses to use offsets 00h-7Fh for its immediate-capable register set and offsets
80h-FFh as a window into some split-only memory. The device receives a memory read

Revision 1.0b

81

transaction for offset 00h with a byte-count of 100h. Since the boundary between
immediate-capable and split-only address spaces is located at an ADB (80h), the device is
free to complete the transaction as an Immediate Transaction up to the ADB (signal Data
Transfer, or Disconnect at Next ADB, or Single Data Phase Disconnect) and signal Split
Response when the initiator continues the Sequence at the ADB.

Case 2: Whenever immediate-capable address space is located directly following split-
only address space, the device is forced either to support providing the immediate-
capable data within a Split Completion, or to signal Target-Abort to reads that cross those
internal boundaries. This restriction applies even if the boundary is located at an ADB.

Example 3: A device with 128 bytes of memory space assigned through a Base Address
register chooses to use offsets 00h-3Fh as a window into some split-only memory and
offsets 40h-7Fh for its immediate-capable register set. The device receives a memory
read transaction for offset 00h with a byte count of 80h. Since the device is not permitted
to provide a Split Completion with less than the requested byte count (see Section
2.10.2), it must either signal Split Response and provide all 128 bytes of valid data in a
single Split Completion or signal Target-Abort (and risk that the system will halt
execution).

Example 4: A device with 256 bytes of memory space assigned through a Base Address
register chooses to use offsets 00h-7Fh as a window into some split-only memory and
offsets 80h-FFh for its immediate-capable register set. The device receives a memory
read transaction for offset 00h with a byte-count of 100h. Although the device could
conceivably signal Split Response and then disconnect its Split Completion at the ADB,
the device is still required to satisfy the entire byte count (see Section 2.10.2). Therefore,
as in Example 3, the device must either signal Split Response and provide all 256 bytes
of valid data in a Split Completion or signal Target-Abort.

2.10.2. Split Completion

A Split Completion transaction is a transaction that uses the Split Completion command.
As for all burst transactions, Split Completions include the byte count in the attribute
phase. The C/BE# bus is reserved and driven high during all data phases of a Split
Completion.

Split Completion transactions address their targets differently than other burst
transactions. The target of a Split Completion is the requester that initiated the Split
Request. The completer stores the Requester ID (bus number, device number, and
function number of the requester) from the attribute phase of the Split Request. The
Requester ID becomes part of the Split Completion address driven on the AD bus during
the address phase of the Split Completion. (See Section 2.10.3 for a complete description
of the Split Completion address.) PCI-X bridges use the Requester ID to determine
which transactions to forward. The requester uses the Requester ID to recognize Split
Completions that correspond to its Split Requests.

The attributes of a Split Completion differ from the attributes of other burst transactions
in that they carry information about the completer rather than the requester. Completer
Attributes are specified in Section 2.10.4.

If the Split Request was a burst read and the completer does not encounter an error
condition, the Split Completion includes read data and has one or more data phases, up to
that required to satisfy the byte count of the Split Request. (See Section 2.10.6 for error
conditions and Split Completion Messages.) The completer and intervening bridges are
permitted to disconnect the Split Completion transaction on any ADB, following the

Revision 1.0b

82

same protocol as other burst transactions. Each time the completer resumes the Split
Completion after an initiator or target disconnection, the address and byte count must be
adjusted to the portion remaining in the Sequence. The completer must initiate all Split
Completions resulting from a single Split Request (i.e., with the same Sequence ID) in
address order. An intervening bridge must maintain the order of Split Completion
transactions with the same Sequence ID (that is, it must keep them in address order).

If the completer intends to disconnect the Split Completion on the first ADB (i.e., the
next higher ADB from the starting address of the Split Request), the completer is
permitted to use a byte count smaller than that of the Split Request (see Section 2.10.4 for
the Byte Count Modified bit requirements). (Note that this is the only way the completer
can disconnect the transaction on an ADB that is closer than four data phases from the
starting address. See Section 2.11.1.1.) The completer must never use a byte count other
than the full remaining byte count that would stop the transaction anywhere other than the
first ADB of the Sequence. As with all Split Completions, the completer must keep the
Split Completion data in address order, even when changing the byte count to disconnect
on the first ADB.

The completer is further restricted from using a byte count less than the full remaining
byte count of the Sequence if both of the following are true:

• The device is designed to complete as an Immediate Transaction a burst memory read
transaction to an address greater than or equal to one particular ADB, ADBn, and less
than the next higher ADB, ADBn+1.

• The starting address of the Sequence being completed as a Split Transaction is
ADBn+1.

This limitation exists because in some cases the burst memory read Sequence has crossed
a PCI-X bridge and what appears as the starting address to the completer is actually a
continuation by the bridge of a larger Sequence. (See Section 8.4.2.2.) Completers that
modify the byte count only when the starting address is not equal to an ADB
automatically meet this requirement.

If the Split Request was a DWORD transaction, the Lower Address field in the Split
Completion address (see Section 2.10.3) is set to zero and the Byte Count field in the
Completer Attributes (see Section 2.10.4) is set to four, regardless of which byte enables
were asserted in the Split Request. If the Split Request was a read transaction, data is
driven on AD[31::00] during the data phase of the Split Completion. Only byte lanes
corresponding to the enabled bytes in the Split Request contain valid data. The requester
must ignore the data in the other byte lanes (except for parity checking). If the Split
Request was a write transaction, a Split Completion Message is driven on AD[31::00]
regardless of the byte enables asserted in the Split Request. See Section 2.10.6 for a
complete description of Split Completion Messages.

Revision 1.0b

83

Implementation Note: Starting Addresses and Byte Count for Split
Completions

Split Completion transactions are burst transactions even if the corresponding Split
Request was a DWORD transaction. The way the completer generates the starting
address and byte count for a Split Completion varies according to the characteristics of
the Split Request and Split Completion.

When a completer generates a Split Completion for a burst Split Request, it normally
copies the lower seven bits of the starting address and the byte count from the Split
Request to the Split Completion. If the completer intends to disconnect the Split
Completion on the first ADB, it is permitted to use a byte count other than that of the
Split Request and must set the Byte Count Modified bit in the Completer Attributes.

In the following cases, the Split Completion is a single DWORD, and the completer sets
the Lower Address field in the Split Completion address to zero, and sets the Byte Count
field in the Completer Attributes to four (without setting the Byte Count Modified bit),
regardless of the size of the Split Request:

• The Split Request was a DWORD transaction.

• The Split Completion contains a Split Completion Message.

Like all burst transactions, Split Completions are permitted to be initiated as 64- or 32-bit
transfers. That is, REQ64# is permitted to be either asserted or deasserted. The
completer (or an intervening bridge) is permitted to initiate the Split Completion at either
transfer width, regardless of the width or type of the Split Request. The width of each
transaction is negotiated independent of all previous transactions in the Sequence and
independent of the Split Request. (See Section 2.12.3.) For example, a 64-bit PCI-X
bridge is permitted to initiate the Split Completion with REQ64# asserted even if the
requester initiated the Split Request with REQ64# deasserted. (In this case, the
requester would likely not assert ACK64#, so the Split Completion would proceed as a
32-bit transaction.) Furthermore, the completer is permitted to initiate the Split
Completion as a 64-bit transfer (REQ64# asserted) even if the Split Request was a
DWORD transaction. In this case, the completer would drive the DWORD of read data
or the Split Completion Message on AD[31::00], since the starting address of the Split
Completion (i.e., the Lower Address field of the Split Completion address) is set to 0 for
completion of DWORD Split Requests. In other words, the transfer width and byte-lane
requirements for a Split Completion are exactly the same as for a memory write of the
identical length.

A completer is permitted to accept a single Split Request at a time. Such a device is
permitted to terminate subsequent splittable transactions with Retry until the requester
accepts the Split Completion. (Overall system performance is generally better if
completers accept multiple Split Transactions at the same time.)

Revision 1.0b

84

2.10.3. Split Completion Address

The Split Completion address is driven on the AD bus during the address phase of Split
Completion transactions. The completer copies all this information from the address and
attribute phases of the Split Request. Figure 2-38 shows the bit assignments for the Split
Completion address. The Split Completion command is driven on C/BE[3::0]#.

Table 2-10 describes the bit definitions of the Split Completion address fields.

Requester
Bus

Num ber

Requester
Dev ice

Num ber

Requester
Function
Num ber

Low er Address [6:0]BUS CM D

00070810111516232431

C/BE[3::0]#

TagR R
O

R

062930 28

AD[31::00]

03

R

Figure 2-38: Split Completion Address

Table 2-10: Split Completion Address Field Definitions

Attribute Function
Reserved (R) Must be set to 0 by the initiator and ignored by the target

(except for parity checking). PCI-X bridges forwarding a
Split Completion must also set these bits to zero, even if
they are set for the Split Completion received by the bridge.
Future versions of the PCI-X definition may define these bits
for additional features. PCI-X bridges designed to the
present revision do not support such additional features and
must set the bits to 0.

Relaxed Ordering (RO) The completer copies this bit from the corresponding bit of
the Requester Attributes (see Figure 2-1). Bridges
throughout the system optionally use the bit to influence
transaction ordering.

A PCI-X bridge forwarding the Split Completion to another
bus operating in PCI-X mode forwards this bit unmodified
with the transaction, even if the bit is not used by the bridge.

Tag The completer copies this field from the corresponding field
of the Requester Attributes. The requester uses this
information to identify the appropriate Split Completions.

If a PCI-X bridge forwards the Split Completion to another
bus operating in PCI-X mode, it leaves this field unmodified.

Revision 1.0b

85

Attribute Function
Requester Bus Number The completer copies this field from the corresponding field

of the Requester Attributes. The requester uses this
information to identify the appropriate Split Completions.

A PCI-X bridge uses this field to identify transactions to
forward. If this field of a Split Completion on the secondary
bus is not between the bridge’s secondary bus number and
subordinate bus number, inclusive, and the primary interface
is operating in PCI-X mode, the bridge forwards the
transaction upstream. If this field of a Split Completion on
the primary bus is between the bridge’s secondary bus
number and subordinate bus number, inclusive, and the
primary interface is operating in PCI mode, the bridge
forwards the transaction downstream. If the bridge forwards
the Split Completion to another bus operating in PCI-X
mode, it leaves this field unmodified. See Section 8.4.3.1 for
the use of this field by PCI-X bridges when one of the
interfaces is operating in conventional mode.

Requester Device
Number

The completer copies this field from the corresponding field
of the Requester Attributes. The requester uses this
information to identify the appropriate Split Completions.

If a PCI-X bridge forwards the Split Completion to another
bus operating in PCI-X mode, it leaves this field unmodified.

Requester Function
Number

The completer copies this field from the corresponding field
of the Requester Attributes. The requester uses this
information to identify the appropriate Split Completions.

If a PCI-X bridge forwards the Split Completion to another
bus operating in PCI-X mode, it leaves this field unmodified.

Lower Address The completer copies this field from the least significant
seven bits of the address of the Split Request, regardless of
the command used by the Split Request, if all of the
following are true:
• The Split Request for this Sequence was a burst read.
• This is the first Split Completion of the Sequence.
• The Split Completion is not a Split Completion Message.
If the Split Completion is disconnected on an ADB, this field
is zero when the Sequence resumes.

If the Split Request was a DWORD transaction or the Split
Completion is a Split Completion Message, this field is set to
zero.

If a PCI-X bridge forwards the Split Completion to another
bus operating in PCI-X mode, it uses this information to
determine where the Split Completion starts relative to an
ADB. The bridge leaves this field unmodified.

Revision 1.0b

86

2.10.4. Completer Attributes

The attribute phase of a Split Completion contains the Completer Attributes. The
Completer Attributes are a combination of the Completer ID and information about the
Sequence stored from the Split Request. Figure 2-39 shows the bit assignments for the
Completer Attributes, and Table 2-11 describes the bit definitions.

Upper
Byte Count

Lower
Byte Count

Completer
Bus

Number

Completer
Device

Number

Completer
Function
Number

Reserved

00070810111516232431

S
C
M

2829

B
C
M

S
C
E

30

AD[31::00]C/BE[3::0]#

35 32

Figure 2-39: Completer Attribute Bit Assignments

Table 2-11: Completer Attribute Field Definitions

Attribute Function
Byte Count Modified
(BCM)

The completer must set this bit to 1 if the Byte Count field for
this Split Completion contains a number smaller than the full
remaining byte count of the transaction. (The completer is
allowed to modify the byte count only to disconnect the
transaction on the first ADB of the Sequence. See
Section 2.10.2 for additional restrictions.) If the byte count
field contains the full remaining byte count of the Split
Request, or if the Split Completion is a Split Completion
Message, the completer sets this bit to 0.

This bit is used only for Split Completions resulting from
burst read transactions (Memory Read Block and Alias to
Memory Read Block) and is set to 0 for Split Completions
resulting from all other commands.

This bit is used for diagnostic purposes. Targets (bridges
and requesters) are permitted to ignore this bit.

Split Completion Error
(SCE)

The completer sets this bit if the transaction is a Split
Completion Message that is an error message (i.e.,
Message Class 1h or 2h). Requesters are permitted to use
this information to differentiate between normal and error
write completion messages before the actual message is
latched and decoded. See the Split Completion Message
attribute bit described below for additional requirements.

Split Completion
Message (SCM)

The completer sets this bit to 0 if the Split Completion
contains read data. It sets this bit to 1 if the Split Completion
contains a Split Completion Message. See Section 2.10.6
for a complete discussion of Split Completion Messages.

The Split Completion Error and Split Completion Message
bits are allowed together as follows:

SCE SCM Case
0 0 Normal completion of read (includes read

data)
0 1 Normal completion of write (includes

message)
1 0 reserved
1 1 Error completion (read or write, includes

message)

Revision 1.0b

87

Attribute Function
Reserved (R) Must be set to 0 by the completer and ignored by the

requester (except for parity checking). PCI-X bridges
forward these bits unmodified.

Completer Bus Number This 8-bit field identifies the completer’s bus number.
Completers supply this number from the Bus Number
register in the PCI-X Status register. The value FFh is
reserved and means the completer’s PCI-X Status register
has not been initialized.

This information is used for diagnostic purposes on the bus.

The combination of the Completer Bus Number, Completer
Device Number, and Completer Function Number is referred
to as the Completer ID.

Completer Device
Number

This 5-bit field contains the device number assigned to the
completer. Completers supply this number from the Device
Number register in the PCI-X Status register. The value 1Fh
is reserved and means the completer’s PCI-X Status register
has not been initialized. The Device Number of the source
bridge is always 00h.

The combination of the Completer Bus Number, Completer
Device Number, and Completer Function Number is referred
to as the Completer ID.

Completer Function
Number

This 3-bit field contains the function number of the completer
within the device. This is the function number in the
configuration address to which the function responds. Unlike
the Device Number and Bus Number fields in the PCI-X
Status register, the value of the Function Number field is
assigned to the function by design and needs no
initialization.

The combination of the Completer Bus Number, Completer
Device Number, and Completer Function Number is referred
to as the Completer ID.

Revision 1.0b

88

Attribute Function
Upper Byte Count,
Lower Byte Count

This 12-bit field is divided between the Upper Byte Count in
the C/BE[3::0]# bus and the Lower Byte Count in the
AD[7::0] bus. The target (requester or bridge) uses this
information to determine the end of the transaction,
particularly if the Split Completion has less than four data
phases. In some cases, the completer copies this field from
the corresponding field in the Requester Attributes. In other
cases, the completer generates the value for this field. (See
Section 2.10.2 for details).

There is no guarantee that the initiator will successfully move
the entire byte count in a single transaction. If the Split
Completion transaction is disconnected for any reason, the
initiator must adjust the contents of the Byte Count field in
the subsequent transactions of the same Sequence to be the
number of bytes remaining in this Sequence.

If the Split Completion is a Split Completion Message, the
completer sets the byte count to four (see Section 2.10.6).

The Byte Count is specified as a binary number, with
0000 0000 0001b indicating 1 byte, 1111 1111 1111b
indicating 4095 bytes, and 0000 0000 0000b indicating
4096 bytes.

Implementation Note: Use of the Byte Count Modified Attribute

The purpose of the Byte Count Modified bit in the Completer Attributes is to provide
visibility for devices that monitor but do not participate in the bus protocol (such as a bus
analyzer). PCI-X devices and bridges are not required to decode this bit.

For example, suppose a 64-bit requester initiates a Memory Read Block transaction for
280 bytes starting at address 104 (three data phases from the ADB at address 128). The
completer (on the same bus) signals Split Response and fetches the data. Further suppose
that the completer wants to disconnect the Split Completion transaction at the first ADB
(address 128) and, therefore, changes the byte count in the Completer Attributes to
24 bytes and sets the Byte Count Modified bit to 1. A logic analyzer monitoring the bus
observes the Byte Count Modified bit set and realizes that the Sequence is not complete,
even though the byte count of 24 is satisfied. After the first split completion, the
completer regains bus ownership, issues a new Split Completion with a byte count of 256
(the remaining byte count), and sets the Byte Count Modified bit to 0.

2.10.5. Requirements for Accepting Split Completions

The requester is required to accept all Split Completions resulting from its own Split
Requests. That is, the requester is required to assert DEVSEL# on all Split Completions
in which the Sequence ID (Requester ID and Tag) corresponds to a Split Request issued
by that device. See Section 5.4.5 for Split Completions that are unexpected or corrupted.

If the requester asserts DEVSEL# for a Split Completion, the requester must accept the
entire byte count requested without signaling Split Response, Retry, Single Data Phase
Disconnect, or Disconnect at Next ADB. If the requester no longer needs the Split
Completion data, the requester must accept it and then discard it. In general, a requester
must have a buffer ready to receive the entire byte count for all Split Requests it issues.

Revision 1.0b

89

The requester is permitted to signal Target-Abort for a Split Completion only under error
conditions in which the integrity of data in the system cannot be guaranteed. An example
of such an error condition is a parity error in the Split Completion address, which
includes the Sequence ID. (See Section 5.4.3 for requirements for the target also to assert
SERR# in this case.) In some cases, signaling Target-Abort for a Split Completion
causes another device to assert SERR#. (See Sections 5.4.4 and 8.7.1.6.) The requester
must assume that a possible consequence of signaling Target-Abort for a Split
Completion transaction is that the system will halt execution.

Bridges (PCI-X bridges and application bridges) are permitted to terminate Split
Completions with Retry and to disconnect multi-data-phase Split Completions in some
cases. See Section 8.4.5 for more details.

If a requester issues more than one Split Request at a time (with different Tags), the
requester must accept the Split Completions from the separate requests in any order.
(Split Completions with the same Tag originate from the same Split Request and always
arrive in address order.)

2.10.6. Split Completion Messages

If the SCM bit in the Completer Attributes is set, the transaction includes a message.
Split Completion Messages notify the requester when a split write request (I/O or
configuration) has completed, and they indicate error conditions in which delivery of data
for a read request or execution of a write request is not possible.

A Split Completion Message is a burst transaction (like all Split Completions) but is
always a single DWORD in length regardless of the size and type of the Split Request.
The Lower Address field in the Split Completion address is set to zero, and the Byte
Count field in the Completer Attributes is set to four for all Split Completion Messages.
The C/BE# bus is reserved and driven high during the data phase of a Split Completion
Message as it is for all Split Completions.

A Split Completion Message terminates a Sequence regardless of how many bytes remain
to be sent. If the Split Request was a burst read, the Byte Count field in the Split
Completion Message indicates the number of bytes that were not sent for this Sequence,
and the Remaining Lower Address field indicates the lower seven bits of the starting
address of the remainder of the Sequence. (PCI-X bridges use this information to release
buffer space that was reserved by the Split Request.)

Figure 2-40 shows the format of the message in the data phase of the Split Completion,
and Table 2-12 shows the encoding of those messages.

Lower
Rem ain ing
Byte Count

00070811192031

Upper
Rem ain ing
Byte Count

R
Rem aining Lower

Address

18 12

M essage Index

28 27

AD[31::00]

M essage
Class

Figure 2-40: Split Completion Message Format

Revision 1.0b

90

Table 2-12: Split Completion Message Fields

Field Function
Message Class Split Completion Messages are in one of the following classes. All

other values are reserved.
0h Write Completion (See Section 2.10.6.1.)
1h PCI-X Bridge Error (See Section 8.8.)
2h Completer Error (See Section 2.10.6.2.)

Message Index Identifies the type of message within the message class. See
Table 2-13 and Table 2-14.

Reserved (R) Must be set to 0 by the completer (or intervening bridge) and ignored
by the requester (or intervening bridge).

Remaining
Lower Address

If the Split Request was a burst memory read, this field contains the
least significant seven bits of the address of the first byte of read data
that has not previously been sent. If the Split Request was a
DWORD transaction, the completer sets this field to zero. PCI-X
bridges use this number to manage buffer space reserved for Split
Completions.

Upper and
Lower
Remaining Byte
Count

If the Split Request was a burst memory read, the completer sets this
field to the number of bytes of read data that have not previously
been sent. If the Split Request was a DWORD transaction, the
completer sets this field to 4. PCI-X bridges use this number to
manage buffer space reserved for Split Completions.

2.10.6.1. Write Completion Message Class

The Write Completion class is used for Split Write Completion messages. The
Remaining Lower Address field is set to zero and the Upper and Lower Remaining Byte
Count field set to four in the data phase of this Split Completion Message (PCI-X bridges
reserve a single DWORD for a Split Write Completion). (The Lower Address in the Split
Completion address is also zero and the byte count in the Completer Attributes is also
four, as it is for all Split Completion Messages.)

Only one message index is defined in this class, as shown in Table 2-13. All other
indices are reserved.

Table 2-13: Write Completion Message Index (Class 0)

Index Message
00h Normal completion

2.10.6.2. Completer Error Message Class

After signaling Split Response, if the completer encounters an abnormal condition that
prevents it from executing a Split Transaction, the completer must notify the requester of
the abnormal condition by sending a Split Completion Message with the Completer Error
class. Examples of such conditions include the following:

1. The byte count of the request exceeds the range of the completer.

2. Parity errors internal to the completer.

If the byte count exceeds the range of the completer, the completer must initiate Split
Completion transactions with read data up to the device boundary and then disconnect the
Sequence. The completer then terminates the Sequence by sending the Split Completion
Message. In all other cases, the completer is permitted to send a Split Completion

Revision 1.0b

91

Message of this class in lieu of the first Split Completion, or any continuation in a
Sequence (after a disconnection), independent of the actual address of the error in the
Sequence. The only inference that can be made as to the actual address of the error is as
follows:

1. If the Sequence was previously disconnected on an ADB, the address of the error is
greater than the last address of the Split Completion transactions that were previously
sent without error for this Sequence.

2. The error address is less than or equal to the ending address of the Sequence.

Table 2-14 shows the index values defined for this message class. All other indices are
reserved.

Table 2-14: Completer Error Messages Indices (Class 2)

Index Message
00h Byte Count Out of Range.

The completer uses this message if the sum of the address
and the byte count of the Split Request exceeds the address
range of the completer.

The completer must initiate Split Completion transactions
with read data up to the device boundary.

A normally functioning requester understands the address
range of the completer it is attempting to read and does not
request data that is out of range. The completer sends this
message to indicate to the requester the occurrence of an
error condition. (The error could have occurred either in the
completer or in the requester). The requester must report
this error condition to its device driver.

01h Split Write Data Parity Error.
The completer sends this message if it terminated a
DWORD write transaction with Split Response and detected
a data parity error. (See Section 5.4.4.)

8Xh Device-Specific Error.
The completer uses this message if it encounters an error
that prevents execution of the Split Request, and the error is
not indicated by one of the other error messages. The lower
four bits of the index are available for the device to encode
device-specific error or diagnostic information. The vendor
of the device must provide documentation for this field.

Revision 1.0b

92

Implementation Note: Reporting Device-Specific Error Messages

One way to report the receipt of a device-specific error Split Completion Message is for
the requester to store the lower four bits of the message index in a device-specific
location and cause an interrupt to the processor. The device driver servicing the interrupt
would read the register.

A common practice in cases such as these is to reserve one error encoding (e.g., 0h) to
indicate no error condition. In this case, software would clear the register after the
occurrence of each error, so it could tell the difference between new errors and errors it
had already recorded.

Alternatively, all 16 codes could be assigned to different errors and an additional device-
specific bit assigned to indicate that the register contains a new error condition.

2.11. Transaction Termination

The figures in this section show the methods by which transactions are terminated.
Those methods include the following:

• Initiator Termination

– Initiator Disconnection or Satisfaction of Byte Count

– Master-Abort Termination

• Target Termination

– Single Data Phase Disconnection

– Disconnection at Next ADB

– Retry Termination

– Split Response Termination

– Target-Abort Termination

Most of the figures in this section that illustrate transaction termination show DEVSEL#
decode A and no target initial wait states. All other DEVSEL# decodes and wait state
combinations specified in Sections 2.8 and 2.9.1 are also allowed.

When a transaction ends, the initiator deasserts and floats FRAME# as described in
PCI 2.2 for sustained tri-state signals, that is, the initiator actively deasserts FRAME# for
one clock and then floats it. For those PCI-X transactions that contain one or two data
phases (i.e., when FRAME# deasserts at the same time IRDY# deasserts), this timing is
required to avoid conflicts with the next bus owner (e.g., see Figure 2-43 and
Figure 2-44). However, for those transactions that contain three, four, or more data
phases (i.e., when FRAME# deasserts before IRDY# deasserts) the initiator optionally
deasserts FRAME# for one clock and then floats it (as in the one- and two- data phase
cases) or deasserts FRAME# for two clocks and then floats it. Most of the figures in this
section that show three, four, or more data phases, show FRAME# deasserted for two
clocks before floating. Figure 2-42 illustrates the other alternative.

Most of the figures in this section that illustrate transaction termination apply both to read
and write transactions, and, therefore, do not show the AD bus. In all cases the initiator
and target begin driving the AD and C/BE# buses as described in Sections 2.8 and 2.9
for the appropriate DEVSEL# timing and number of wait states. The initiator and target
float the AD and C/BE# buses according to the following rules:

Revision 1.0b

93

1. Initiator:

a. If the transaction has four or more data phases, the initiator floats the C/BE# bus
on the clock it deasserts IRDY#. If the transaction has less than four data phases,
the initiator floats the C/BE# bus either on the clock it deasserts IRDY# or one
clock after that.

b. If the transaction is a write with four or more data phases, the initiator floats the
AD bus on the clock it deasserts IRDY#. If the transaction is a write with less
than four data phases, the initiator floats the AD bus either on the clock it
deasserts IRDY# or one clock after that.

2. Target: If the transaction is a read, the target floats the AD bus on the clock after the
last data phase, regardless of the number of data phases in the transaction or the type
of termination. That is, the target floats the AD bus on the clock it deasserts
DEVSEL#, STOP#, and/or TRDY# after signaling the last Data Transfer or target
termination.

2.11.1. Initiator Termination

2.11.1.1. Initiator Disconnection or Satisfaction of Byte Count

Transactions that are disconnected by the initiator on an ADB before the byte count has
been satisfied and those that terminate at the end of the byte count appear the same on the
bus. Initiator termination of a transaction with four or more data phases differs from the
case in which the transaction has less than four data phases.

Figure 2-41 illustrates initiator termination after four or more data phases. In this case,
the initiator signals the end of the transaction by deasserting FRAME# one clock before
the last data phase. It deasserts IRDY# on the clock after the last data phase.

PCI_CLK

1 2 3 4 5 6 20 21 22191817 23

DEVSEL#

TRD Y#

IRDY#

FRA M E#

Figure 2-41: Initiator Termination of a Burst Transaction with Four or More Data
Phases

Initiator termination in less than four data phases occurs only if the starting address, byte
count, and width of the bus are such that the transaction has less than four data phases. If
the initiator intends to disconnect a transaction on the first ADB, and the width of the bus
is such that the starting address is less than four data phases from the ADB, the initiator
must adjust the byte count to terminate the transaction on the ADB.

Table 2-15 shows the number of data phases for transactions up to 12 DWORDs long.
(For this table, the length of the transaction is measured from the starting address rounded
down to the next DWORD address.) As the table shows, the number of data phases is
equal to the number of DWORDs if the transaction width is 32 bits. If the transaction

Revision 1.0b

94

width is 64 bits, the number of data phases depends on whether the transaction starts on
an even or odd DWORD.

Table 2-15: Data Phases Dependence on Starting Address and Bus Width

Data Phases
64-bit Transfer

Transaction
Length
(DWORDs)

32-bit
Transfers

Starting on
Even
DWORD

Starting on
Odd
DWORD

1 1 1 1
2 2 1 2
3 3 2 2
4 4 2 3
5 5 3 3
6 6 3 4
7 7 4 4
8 8 4 5
9 9 5 5
10 10 5 6
11 11 6 6
12 12 6 7

Figure 2-42 through Figure 2-44 illustrate initiator termination after three, two, and one
data phases, respectively. In each of these cases, the initiator deasserts FRAME# two
clocks after the target asserts TRDY#. The initiator deasserts IRDY# one clock after the
last data phase but never less than two clocks after the first data phase (the clock in which
FRAME# is deasserted). The target deasserts TRDY# and DEVSEL# on the first clock
after the byte count provided by the initiator is satisfied.

PCI_CLK

1 2 3 4 5 6 7 8 9 10 11

DEVSEL#

IRDY#

FRAM E#

TRDY#

Figure 2-42: Initiator Termination of a Burst Transaction with Three Data Phases

Revision 1.0b

95

PCI_CLK

1 2 3 4 5 6 7 8 9 10

DEVSEL#

TRDY#

IRDY#

FRAM E#

Figure 2-43: Initiator Termination of a Burst Transaction with Two Data Phases

PCI_CLK

1 2 3 4 5 6 7 8 9 10

DEVSEL#

TRDY#

IRDY#

FRAM E#

Figure 2-44: Initiator Termination of a Burst Transaction with One Data Phase

2.11.1.2. Master-Abort Termination

If no target asserts DEVSEL# within six clocks after the address phase (the second
address phase for dual address cycles), the initiator deasserts FRAME# and IRDY# eight
clocks after the address phase(s) and floats the bus one clock later. The initiator sets bits
in its Status register the same as for conventional PCI.

Figure 2-45 shows a Master-Abort termination of a transaction.

PCI_CLK

1 2 3 4 5 6 7 8 9 10 11 12 13

FRAM E#

IRDY#

TRDY#

DEVSEL#
Dec A Dec B Dec C SUB

NO RESPONSE

ACKNOWLEDGE

Figure 2-45: Master-Abort Termination

Revision 1.0b

96

2.11.2. Target Termination and Data Phase Signaling

After a target asserts DEVSEL# in the target response phase, it must complete the
transaction with one or more data phases. The target signals its intention on each clock
after the target response phase with a combination of the target control signals,
DEVSEL#, STOP#, and TRDY#. Table 2-16 shows all of the alternatives for target
data phase signaling.

Table 2-16: Target Data Phase Signaling

Target
Data Phase
Signaling

DEVSEL# STOP# TRDY# Target Initial
Latency

Section 2.9.1

Data
Transfer

Transaction
Terminates

or
Continues

Master-
Abort
(Note 1)

Deassert Deassert Deassert na na na

Split
Response

Deassert Deassert Assert 8 (Note 2) Terminates

Target-
Abort

Deassert Assert Deassert 8 No Terminates

Single Data
Phase
Disconnect

Deassert Assert Assert 16 Yes Terminates

Wait State Assert Deassert Deassert na No Continues
Data
Transfer

Assert Deassert Assert 16 Yes Continues

Retry Assert Assert Deassert 8 No Terminates
Disconnect
at Next
ADB

Assert Assert Assert 16 Yes (Note 3)

Notes:
1. Shown for reference only. Not allowed after DEVSEL# is asserted. No target drives

DEVSEL#, STOP#, and TRDY# for a transaction terminated with Master-Abort. The signals
are deasserted by their respective pull-up resistors.

2. No data transfers on a Split Response for a read transaction. The target latches data on a
Split Response for a write transaction. However, in both cases, the transaction is not complete
until the requester receives the Split Completion.

3. If the target signals Disconnect at Next ADB, the transaction continues to an ADB. (See
Section 2.11.2.2 for details.)

A data phase ends each time the target signals anything other than Wait State (which is
permitted only on the first data phase). See Section 2.9.1 for a discussion of the number
of wait states permitted and the target initial latency.

If the target signals Data Transfer on one data phase, the transaction continues until the
byte count is satisfied or the initiator terminates the transaction. The target is limited to
signaling Data Transfer, Disconnect on Next ADB, or Target-Abort on subsequent data
phases.

If the target signals Split Response, Target-Abort, Single Data Phase Disconnect, or
Retry, the transaction terminates immediately. The transaction terminates on an ADB if
the target signals Disconnect at Next ADB (see Section 2.11.2.2 for details).

Revision 1.0b

97

When the transaction terminates (either by initiator or target termination), the target
deasserts DEVSEL#, STOP#, and TRDY# one clock after the last data phase (if they
are not already deasserted) and floats them one clock after that.

Targets must not store any information about a transaction after it is terminated either by
the initiator or the target in any method other than Split Response. (Storing of transaction
information for diagnostic purposes is permitted, if such information does not affect the
device’s response to transactions on the bus. Target-Abort termination and some error
conditions require the target to set bits in the Status register.) Delayed Transactions are
not permitted. For example, if a target collects data up to the byte count of a read
transaction, delivers some of that data by signaling Data Transfer (i.e., executes it as an
Immediate Transaction), and the transaction is disconnected (either by the target or the
initiator), the target must discard the remainder of the data, unless the target guarantees
that the buffered data will not become stale. The target must not assume that the initiator
will continue any read operation after a transaction is terminated by the initiator or the
target.

2.11.2.1. Single Data Phase Disconnection

The target signals its intention to complete a single data phase and then disconnect the
transaction by signaling Single Data Phase Disconnect. The target signals Single Data
Phase Disconnect by asserting TRDY# and STOP# and deasserting DEVSEL# on the
first data phase of the transaction (with or without preceding wait states up to the
maximum specified in Section 2.9.1). It is permitted both on burst transactions (even if
the byte count is small enough to limit the transaction to a single data phase) and
DWORD transactions (which are always a single data phase). If the target signals Single
Data Phase Disconnect, the transaction contains only a single data phase, and the initiator
deasserts FRAME# and IRDY# two clocks after the data phase.

Targets must be designed never to signal both Single Data Phase Disconnect and Data
Transfer for memory write transactions that begin four or less data phases before any
single ADB, unless the target verifies that the byte count is small enough not to include
that ADB. That is, if a target is designed to signal Single Data Phase Disconnect for a
memory write transaction with an address four or less data phases before an ADB, that
target must be designed never to signal Data Transfer for a memory write transaction that
begins four or less data phases from that same ADB and has a bye count large enough to
include the ADB.

Targets are permitted to signal Single Data Phase Disconnect for a memory read
transaction only if they are prepared to complete all transactions that are continuations of
that Sequence, up to the next ADB, as Immediate Transactions. That is, the device must
not signal Single Data Phase Disconnect for any individual read transaction of a
Sequence if all of the following are true:

• The transaction is a burst read.

• The byte count is such that the transaction addresses at least one location to which
the device will respond with Split Response when the Sequence is continued by the
initiator.

• There is not an ADB between the first address of the transaction and the location to
which the device will respond with Split Response when the Sequence is continued.

Revision 1.0b

98

PCI_CLK

1 2 3 4 5 6 7 8 9 10

FRAM E#

IRDY#

TRDY#

STO P#

DEVSEL#

Figure 2-46: Single Data Phase Disconnection

Implementation Note: Use of Single Data Phase Disconnection

Single data phase disconnection is intended for address spaces such as control registers
that generally are not accessed using burst transactions. Although it is permitted for both
read and write transactions, its most common application is for writes. In some cases,
memory write transactions that are intended to be separate transactions are combined into
a single transaction by a host bridge or a conventional PCI bridge. The target avoids
having to accept a burst up to the next ADB by signaling Single Data Phase Disconnect
on each data phase. If the target signals Single Data Phase Disconnect for a location that
is frequently addressed with multiple-data-phase burst transactions, the device’s
performance is severely reduced.

Revision 1.0b

99

Implementation Note: Single Data Phase Disconnection and Memory
Write Transactions

If a target signals Single Data Phase Disconnect for a memory write transaction that starts
close to an ADB and signals Data Transfer for the continuation of that memory write, a
PCI-X bridge will be unable to forward the memory write transaction in the following
case:

1. A requester initiates a long memory write transaction (e.g., a host bridge combines
many small memory write transactions) addressing a completer on the other side of a
PCI-X bridge.

2. The bridge does not have buffer space available to hold the entire byte count of the
memory write. However, it does have space for several ADQs of memory write data,
so it responds to the transaction with Data Transfer and begins accepting data.

3. As the last bridge buffer fills, the bridge signals Disconnect at Next ADB, and the
requester disconnects the transaction at the next ADB.

4. The bridge forwards this first memory write transaction of the Sequence to the
destination bus.

5. The completer responds to the memory write transaction with Single Data Phase
Disconnect and continues to do so for each continuation of the Sequence until the
bridge holds less than four data phases of data in its buffers.

If the completer were to respond to the next continuation of the memory write Sequence
with Data Transfer, the bridge would not be able to disconnect the transaction at the next
ADB, because the continuation began less than four data phases from an ADB. The
bridge could not continue beyond the ADB, because the requester has not yet written that
data on the originating bus.

Revision 1.0b

100

Implementation Note: Single Data Phase Disconnection and Burst
Memory Read Transactions

The use of Single Data Phase Disconnect for burst memory read transactions is allowed,
but rarely occurs in actual applications. In normal use, a device that is designed to
respond with Single Data Phase Disconnect is never addressed by burst memory read
transactions. Therefore, completers are limited in the way they respond to burst read
transactions if they mix Single Data Phase Disconnect and Split Response between a
single pair of adjacent ADBs.

For example, a device with 256 bytes of memory space assigned through a Base Address
register is designed to respond with Split Response if address offset A0h is read. If the
device is addressed by a read transaction starting at offset 00h with a length of 256 bytes,
the device would be permitted to signal Single Data Phase Disconnect. In this case there
is an ADB (offset 80h) between the first address of the read transaction and the Split
Response address. However, as the initiator continues reading from the disconnection
point, the starting address eventually advances to the ADB (offset 80h) with a length of
128 bytes. In this case the device would not be permitted to signal Single Data Phase
Disconnect because there is no ADB between the starting address and the address to
which the device will respond with Split Response (A0h).

If the same device is addressed by a different Sequence starting at address 80h with a
byte count of 32 bytes (that is, an ending address of 9Fh), the device is permitted to
signal Single Data Phase Disconnect because the Sequence does not include any locations
to which the device will respond with Split Response when the initiator resumes after the
disconnection.

See Section 2.10.1 for additional design considerations when locations of this type are
mixed between the same two ADBs.

This restriction on the use of Single Data Phase Disconnect and Split Response simplifies
the design of PCI-X bridges forwarding a burst read transaction. Without this restriction
a PCI-X bridge forwarding a burst read request would have to deal with the possibility
that the completer could signal Single Data Phase Disconnect at the beginning of the
transaction and then change to Split Response midway between two ADBs. A PCI-X
bridge would not generally be able to create a Split Completion for the transactions if it
only held a portion of the data that ended midway between two ADBs. The completer is
permitted to change from an immediate completion to a Split Response only at an ADB.

2.11.2.2. Disconnection at Next ADB

The target signals its intention to disconnect the transaction at the next ADB by signaling
Disconnect at Next ADB. The target signals Disconnect at Next ADB by asserting
TRDY#, DEVSEL#, and STOP# on any data phase of the transaction. The target is
permitted to signal Disconnect at Next ADB regardless of the starting address or length
of the transaction, or whether the transaction is a burst or DWORD. Some restrictions
apply to the use of Disconnect at Next ADB by bridges (see Section 8.4.6). Once the
target has signaled Disconnect at Next ADB, it is limited to signaling Disconnect at Next
ADB or Target-Abort on all subsequent data phases until the end of the transaction. (The
transaction ends immediately after the target signals Target-Abort. See Section 2.11.2.5.)

If the length of a transaction is such that it does not cross the next ADB (i.e., if it is a
DWORD transaction or the byte count of a burst is satisfied before reaching the next
ADB), Disconnect at Next ADB is treated by the initiator the same as Data Transfer. If
the transaction is a burst that would otherwise cross the next ADB and the target signals

Revision 1.0b

101

Disconnect at Next ADB on the first data phase of the transaction, the transaction ends at
the first ADB. If the target signals Disconnect at Next ADB after the first data phase and
four or more data phases before an ADB, the initiator disconnects the transaction on that
ADB. If the target signals Disconnect at Next ADB after the first data phase and less
than four data phases before an ADB, the transaction crosses that ADB and continues to
the next ADB (unless the byte count is satisfied before that).

The following figures illustrate Disconnect at Next ADB. Figure 2-47 illustrates
Disconnect at Next ADB after the first data phase and four data phases from an ADB.
The target signals Disconnect at Next ADB by asserting STOP# while TRDY# and
DEVSEL# are asserted four data phases before the ADB.

PCI_CLK

1 2 3 4 5 6 20 21 22191817 23

FRAM E#

IRDY#

TRDY#

STOP#

DEVSEL#

(ADB)

Figure 2-47: Disconnect at Next ADB Four Data Phases from an ADB

Figure 2-48 illustrates the case in which the target signals Disconnect at Next ADB on
various data phases relative to an ADB. If the target signals Disconnect at Next ADB
after the first data phase and less than four data phases from an ADB (clocks 7, 8, or 9 in
the figure), the transaction crosses that ADB and disconnects on the next one. If the
target signals Disconnect at Next ADB four or more data phases before an
ADB (clocks 11 through 22 in the figure), the transaction disconnects on the ADB.

PCI_CLK

1 2 3 4 5 6 21 221098 23 24 25 26 277

(ADB N)(ADB N-1)

FRAME#

IRDY#

TRDY#

STOP#

DEVSEL#

Figure 2-48: Disconnect at Next ADB on ADB N

Figure 2-49 through Figure 2-51 illustrate the target signaling Disconnect at Next ADB
for transactions whose starting address is three, two, and one data phases from the ADB,
respectively. In these figures, the target signals Disconnect at Next ADB on the first data
phase. The initiator responds by deasserting FRAME# two clocks after the first data
phase. The initiator deasserts IRDY# one clock after the last data phase but never less
than two clocks after the first data phase (the clock in which FRAME# is deasserted).

Revision 1.0b

102

PCI_CLK

1 2 3 4 5 6 7 8 9 10 11

DEVSEL#

IRDY#

FRAM E#

STO P#

TRDY#

(ADB)

Figure 2-49: Disconnect at Next ADB with Starting Address Three Data Phases
from an ADB

PCI_CLK

1 2 3 4 5 6 7 8 9 10

(ADB)

FRAM E#

IRDY#

TRDY#

STO P#

DEVSEL#

Figure 2-50: Disconnect at Next ADB with Starting Address Two Data Phases from
an ADB

PCI_CLK

1 2 3 4 5 6 7 8 9 10

(ADB)

FRAM E#

IRDY#

TRDY#

DEVSEL#

STO P#

Figure 2-51: Disconnect at Next ADB with Starting Address One Data Phase from
an ADB

Revision 1.0b

103

2.11.2.3. Retry Termination

The target indicates that it is temporarily unable to complete the transaction by signaling
Retry. The target signals Retry by asserting STOP# and DEVSEL# and keeping
TRDY# deasserted on the first data phase of the transaction (with or without preceding
wait states up to the maximum specified in Section 2.9.1). The target is permitted to
terminate the transaction with Retry only under the following conditions:

• The device initialization time after the rising edge of RST# (Trhfa specified in

Table 9-5) has not elapsed.

• The device normally transfers data within the target initial latency limit listed in
Table 2-9, but under some conditions that are guaranteed to resolve quickly,
execution of the transaction would take longer. See Section 2.9.1 for additional
limitations.

• The transaction is a memory write and all of the buffers for accepting memory write
transactions are currently full with previous memory write transactions. See
Section 2.13 for additional limitations.

• The transaction is not a memory write, it would require longer than the target initial
latency to execute, and the target’s Split Request queue is full.

• The transaction is a Split Completion, the target is a bridge as defined in Section 8.2,
and the buffers for accepting Split Completions are currently full. See Section 8.4.5
for more details.

Unlike conventional PCI, a PCI-X target must not assume the initiator will repeat a
transaction terminated with Retry. For transactions other than memory writes, the target
must discard all state information related to a transaction for which it signals Retry.
Delayed Transactions as defined in PCI 2.2 are not allowed. For memory write
transactions, the target must not change its internal state in any way if it signals Retry on
the first data phase of the Sequence. (The requester must deliver the full byte count of
the Sequence after the first data phase is accepted. See Section 2.1.)

The target signals Retry by asserting DEVSEL# and STOP# and keeping TRDY#
deasserted on the first data phase as shown in Figure 2-52.

PCI_CLK

1 2 3 4 5 6 7 8 9 10

DEVSEL#

STO P#

TRDY#

IRDY#

FRAM E#

Figure 2-52: Retry Termination

Revision 1.0b

104

2.11.2.4. Split Response Termination

The target signals that it has enqueued the transaction as a Split Request by signaling
Split Response. The target signals Split Response by asserting TRDY#, deasserting
DEVSEL#, and keeping STOP# deasserted on the first data phase of the transaction
(with or without preceding wait states up to the maximum specified in Section 2.9.1).
Figure 2-53 shows Split Response for a read transaction (either burst or DWORD). The
target drives all bits of the AD bus high during the clock in which it signals Split
Response of a read transaction. Figure 2-54 shows Split Response for a write transaction.

PCI_CLK

1 2 3 4 5 6 7 8 9 10

ADDRESSAD ATTR FFFFFFFFh

BUS CM DC/BE# ATTR

FRAME#

IRDY#

TRDY#

STOP#

DEVSEL#

��
��BE#'s = FFh

Figure 2-53: Split Response Termination for a Read Transaction

PCI_CLK

1 2 3 4 5 6 7 8 9 10

ADDRESSAD[31::00] ATTR DATA-0�� ��
FRAM E#

IRDY#

TRDY#

STO P#

DEVSEL#

BUS CM DC/BE[3::0]# ATTR

��
BE#'s = Fh

Figure 2-54: Split Response Termination for a DWORD Write Transaction

Revision 1.0b

105

2.11.2.5. Target-Abort Termination

As in conventional PCI, the target signals Target-Abort to end the transaction and to
notify the initiator not to repeat it. As in conventional PCI, PCI-X targets are permitted
to limit the size and type of read transactions that they execute and to terminate all others
with Target-Abort. For example, if a PCI-X device supports only DWORD read
transactions in a certain address range, and if the device receives a read request for more
than a DWORD, the device is permitted to signal Target-Abort. See Section 2.10.1 for
examples of the use of Target-Abort for read transactions that address both immediate-
capable and split-only regions. (In some cases independent memory write Sequences are
combined by host or conventional PCI bridges, so targets are not permitted to use Target-
Abort to limit the size of memory write transactions they execute.) The use of Target-
Abort for Split Completion transactions is restricted. (See Section 2.10.5.)

It should be understood that signaling Target-Abort typically has deleterious effects on
the system, possibly including halting execution of the system software, and device
designers should avoid these circumstances whenever possible.

The target signals Target-Abort by asserting STOP# and deasserting DEVSEL# and
TRDY#. The target is permitted to signal Target-Abort on any data phase. The
transaction and the Sequence end on the clock in which the target signals Target-Abort
regardless of its relationship to an ADB or the number of bytes remaining to be sent in
the Sequence. The initiator deasserts FRAME# and IRDY# two clocks after the target
signals Target-Abort, unless one or both of these signals deasserts sooner because the
transaction was already about to end (e.g., byte count satisfied, initiator or target
disconnection on an ADB).

Figure 2-55 illustrates a Target-Abort in the first data phase of a transaction. Figure 2-56
illustrates a Target-Abort after the target has signaled Data Transfer for several data
phases of a burst transaction.

PCI_CLK

1 2 3 4 5 6 7 8 9 10

FRAM E#

IRDY#

TRDY#

STO P#

DEVSEL#

Figure 2-55: Target-Abort on First Data Phase

Revision 1.0b

106

PCI_CLK

1 2 3 4 5 6 7 8 9 10

D
ata

T
ran

sfer

D
ata

T
ran

sfer

FRAM E#

IRDY#

TRDY#

STO P#

DEVSEL#

11 12

Figure 2-56: Target-Abort after Data Transfer

2.12. Bus Width

As in conventional PCI, PCI-X devices are permitted to implement either a 64-bit or a
32-bit version of the interface. The width of the address is independent of the width of
the device or of the data transfer. Addresses are driven in one clock for non-memory
transactions and one or two clocks for memory transactions depending on whether the
address is below the first 4 GB boundary (see Section 2.12.1). Attributes are always
driven in a single clock for both 64- and 32-bit devices. The width of a PCI-X data
transfer is negotiated between the initiator and target on each transaction using REQ64#
and ACK64# in a manner similar to conventional PCI (see Section 2.12.3).

Devices discover the width of the bus to which they are attached by the state of REQ64#
at the rising edge of RST# as specified in PCI 2.2.

At various places throughout the discussion of bus widths, a bus or a portion of a bus is
described as “reserved.” Unless otherwise noted, the state of a “reserved” bus is not
specified and is ignored by the device receiving the bus.

2.12.1. Address Width

PCI-X support for varying the width of the address minimizes the changes from the
corresponding support in conventional PCI. The following requirements for PCI-X are
the same as for conventional PCI:

1. Addresses in I/O and Configuration Spaces are always 32-bit. Interrupt
Acknowledge, Special Cycle, and Split Completion transactions always have a 32-bit
address field, even though they use it for other purposes. The upper AD bus is
reserved during the address phase of these transactions. Addresses in Memory Space
are permitted up to 64-bits.

2. If the address of a transaction is less than 4 GB, the following are all true:

a. The transaction uses a single address cycle.

b. During the address phase, a 64-bit initiator drives the address on AD[31::00],
and AD[63::32] are reserved. A 32-bit initiator drives the address on
AD[31::00].

c. During the address phase, a 64-bit initiator drives the command on C/BE[3::0]#,
and C/BE[7::4]# are reserved. A 32-bit initiator drives the command on
C/BE[3::0]#.

Revision 1.0b

107

3. If the address of a transaction is greater than or equal to 4 GB, the transaction uses a
dual address cycle.

a. If the initiator is 64-bits wide, the following are all true:

i) In the first address phase, AD[63::32] contain the upper half of the address,
and AD[31::00] contain the lower half of the address. In the second address
phase, AD[63::32] and AD[31::00] contain duplicate copies of the upper
half of the address.

ii) In the first address phase, C/BE[3::0]# contain the Dual Address Cycle
command and C/BE[7::4]# contain the transaction command. In the second
address phase, C/BE[3::0]# and C/BE[7::4]# contain duplicate copies of
the transaction command.

b. If the initiator is 32-bits wide, the following are all true:

i) In the first address phase, AD[31::00] contain the lower half of the address.
In the second address phase AD[31::00] contain the upper half of the
address.

ii) In the first address phase, C/BE[3::0]# contain the Dual Address Cycle
command. In the second address phase, C/BE[3::0]# contain the actual
transaction command.

4. DEVSEL# timing designations measure from the second address phase of a
transaction with a dual address cycle. Note that it is possible for a 64-bit target to
decode its address from a 64-bit initiator after only the first address phase of a dual
address cycle and be ready to assert DEVSEL# sooner than a 32-bit target.
(However, in PCI-X mode no device is permitted to assert DEVSEL# sooner than
the first clock after the attribute phase.)

5. The rest of the transaction proceeds identically after either a single address cycle or a
dual address cycle.

The following requirements for PCI-X are different from conventional PCI:

1. All PCI-X devices that initiate or respond to memory transaction must support 64-bit
memory addressing. This includes the following:

a. All devices that initiate memory transactions must be capable of generating
addresses greater than 4 GB.

b. All targets that include memory Base Address Registers (except Expansion ROM
Base Address registers) must implement the 64-bit versions using the method
defined in PCI 2.2. (PCI-X devices set the Prefetchable bit in all memory Base
Address registers unless the range includes addresses with read side effects or
addresses in which the device does nottolerate write merging. See Section 7.1.)

c. All prefetchable memory range registers in PCI-X bridges must support the
64-bit versions of those registers as defined in Bridge 1.1.

2. Split Completions always have a single address phase both for 64-bit and 32-bit
initiators. See Section 2.10.3.

Revision 1.0b

108

PCI_CLK

1 2 3 4 5 6 7 8 9 10 11 12

LO -A DDRAD[31::00] ATTR DATA-0L DATA-1L DATA-2L DATA-3LHI-ADD R

AD[63::32] DATA-0H DATA-1H DATA-2H DATA-3HHI-ADD R

DUAL ADC/BE[3::0]# ATTRBUS CM D

FRAME#

IRDY#

TRDY#

DEVSEL#

BUS CM DC/BE[7::4]#

REQ64#

ACK64#

Figure 2-57: Dual Address Cycle 64-bit Memory Read Burst Transaction

Figure 2-57 illustrates a 64-bit initiator executing a transaction with a dual address cycle
for a 64-bit burst read transaction in which the target signals Data Transfer until the end
(initiator disconnection or byte count satisfied). The initiator drives the entire address
(lower address on AD[31::00] and upper address on AD[63::32]) and both commands
(Dual Address Cycle on C/BE[3::0]# and the actual transaction command on
C/BE[7::4]#) during the initial address phase at clock 3. On the second clock of the
address phase, the initiator drives the upper address on AD[31::00] (and AD[63::32])
and the transaction command on C/BE[3::0]# (and C/BE[7::4]#). The one-clock
attribute phase in clock 5 immediately follows the second address phase. The figure
shows a 64-bit target responding with device select timing A by asserting DEVSEL# in
clock 6. DEVSEL# is never asserted earlier than the clock after the attribute phase
(device timing A).

2.12.2. Attribute Width

Attributes are always driven in a single attribute phase both for 64-bit and 32-bit
initiators. AD[63::32] and C/BE[7::4]# are driven high during the attribute phase of
transactions from a 64-bit initiator.

2.12.3. Data Transfer Width

PCI-X support for varying the width of data transfers minimizes the changes from the
corresponding support in conventional PCI. The following requirements for PCI-X are
the same as for conventional PCI:

1. Only memory transactions use 64-bit data transfers. All other transactions use 32-bit
data transfers.

2. 64-bit addressing is independent of the width of the data transfers.

3. A device with a 64-bit bus is permitted to initiate and respond to transactions either
as a 64-bit device or as a 32-bit device.

Revision 1.0b

109

4. A 64-bit initiator asserts REQ64# with the same timing as FRAME# to request a 64-
bit data transfer. It deasserts REQ64# with the same timing as FRAME# at the end
of the transaction.

5. If a 64-bit initiator addresses a device that responds as a 32-bit target, the initiator is
permitted either to drive to a valid but unspecified state or to float the C/BE[7::4]#
bus after the first data phase. If the transaction is a write, the initiator is permitted to
do the same with the AD[63::32] bus and PAR64.

The following requirements for PCI-X are different from conventional PCI:

1. All PCI-X devices support a status bit indicating whether they are a 64- or 32-bit
device. See Section 7.2.4.

2. Only burst transactions use 64-bit transfers. DWORD transactions use 32-bit
transfers.

3. Allowable disconnect boundaries are unaffected by the width of the data transfer. A
32-bit transfer has twice as many data phases between two ADBs.

4. AD[2] is either 0 or 1, depending on the starting byte address of the transaction.
(Conventional PCI requires AD[2] to be 0 for 64-bit data transfers because the byte
enables indicate the actual starting address.)

5. The following rules apply to memory write and Split Completion transactions from a
64-bit initiator. (Split Completion transactions have only a partial starting address, as
described in Section 2.10.3.)

a. If AD[2] of the starting byte address is 1 (that is, the starting address of the
transaction is in the upper 32-bits of the bus), the 64-bit initiator must drive the
data both on AD[63::32] and AD[31::00], and the byte enables both on
C/BE[7::4]# and C/BE[3::0]# of the first data phase.

b. If the target asserts ACK64# when it asserts DEVSEL# (indicating it is a 64-bit
target), and the target inserts wait states, the initiator must toggle between the
first and second QWORD data phases on the AD[63::00] and byte enables on
C/BE[7::0]#. If the transaction starts on an odd DWORD, that DWORD and its
byte enables must be copied down to the lower half of the bus each time the first
data phase is repeated.

c. If the target does not assert ACK64# when it asserts DEVSEL# (indicating it is
responding as a 32-bit target) and the target inserts wait states, the initiator must
toggle between the first and second DWORD data phases of the transaction on
AD[31::00] and byte enables on C/BE[3::0]# (as it would if it were a 32-bit
initiator on a 32-bit bus).

Implementation Note: Deassertion of ACK64# for Single Data Phase
Disconnect

As in conventional PCI, the width of the transaction is established by the state of
ACK64# on the first clock that DEVSEL# is asserted, and ACK64# always deasserts
when DEVSEL# deasserts. If a 64-bit PCI-X target asserts ACK64# with DEVSEL#
and then signals Single Data Phase Disconnect (see Section 2.11.2.1), the target deasserts
DEVSEL# and ACK64# on the last clock of the data phase (the clock in which data
transfers). This data phase is 64-bits wide, even though ACK64# is deasserted during
the data phase.

Figure 2-58 through Figure 2-65 illustrate the cases in which a device initiates a 64-bit
transaction and a 32-bit target responds. Split Completion transactions behave the same

Revision 1.0b

110

as write transactions except that the C/BE# bus is driven high by the initiator. In each
case, the data bus shows the low and high DWORDs from the point of view of a 64-bit
initiator.

1 2 3 4 5 6 7 8 9 10 11 12 13

ADD RE S SAD[31::00] ATTR DATA-0L DATA-0H DATA-1L DATA-1H DATA-2L DATA-2H

�AD[63::32]

IRDY#

TRDY#

ACK64#

PCI_CLK

BU S C MDC/BE[3::0]# ATTR

C/BE[7::4]#

REQ 64#

FRAM E#

DEVSEL#

������

Figure 2-58: 64-bit Initiator Reading from 32-bit Target Starting on Even DWORD

TRDY#

IRDY#

DEVSEL#

PCI_CLK

1 2 3 4 5 6 7 8 9 10 11

FRAM E#

REQ64#

C/BE[3::0]#

AD[31::00]

AD[63::32]

C/BE[7::4]#

ACK64#

12 13 14

ATTR

ATTR DATA-0H DATA-1L DATA-1H DATA-2L DATA-2H DATA-3L DATA-3H

��

ADDRESS

BUS CMD

��
��

�����
�����

Figure 2-59: 64-bit Initiator Reading from 32-bit Target Starting on Odd DWORD

Revision 1.0b

111

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ADDRESSAD[31::00] ATTR DATA-0L DATA-0H DATA-1L DATA-1H� DATA-2L DATA-2H DATA-3L DATA-3H

������
������

��
��AD[63::32] DATA-0H

�
�

BUS CMDC/BE[3::0]# BE#'s-0LATTR BE#'s-0H BE#'s-1L BE#'s-1H BE#'s-2L BE#'s-2H BE#'s-3L BE#'s-3H

��C/BE[7::4]# ������BE#'s-0H

FRAM E#

REQ64#

IRDY#

DEVSEL#

ACK64#

PCI_CLK

TRDY#

Figure 2-60: 64-bit Initiator Writing to 32-bit Target Starting on Even DWORD

Figure 2-61 illustrates the case of a device initiating a 64-bit write that begins on an odd
DWORD. Split Completion timing would be the same, except the C/BE# bus is reserved
in the data phases. In this case, the initiator must duplicate the first DWORD of data and
byte enables on both the upper and lower bus halves. Notice that in this case, one or
more byte enables in C/BE[3::0]# are asserted even though the transaction starts on an
odd DWORD and no byte enable before the starting address of a write transaction is
allowed to be asserted. If a 32-bit target responds by asserting DEVSEL# without
asserting ACK64# (as is shown in Figure 2-61), the 32-bit target captures the first data
and byte enables from the lower half of the bus. When the initiator observes DEVSEL#
asserted with ACK64# deasserted, it continues the transaction on the lower bus half as a
32-bit initiator would. Notice that Figure 2-61 illustrates initiator termination after an
even DWORD, which can only occur if the byte count is satisfied in that DWORD. (An
ADB would always occur after an odd DWORD.)

1

ADDRESSAD[31::00] ATTR DATA-0H DATA-1L DATA-1H DATA-2L

�
� DATA-2H DATA-3L DATA-3H DATA-4L

PCI_CLK

��������
AD[63::32] DATA-0H

�BUS
CMD

C/BE[3::0]# BE#'s-0HATTR BE#'s-1L BE#'s-1H BE#'s-2L BE#'s-2H BE#'s-3L BE#'s-3H BE#'s-4L

��������
C/BE[7::4]# BE#'s-0H

REQ 64#

IRDY#

TRDY#

DEVSEL#

ACK64#

FRAM E#

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 2-61: 64-bit Initiator Writing to 32-bit Target Starting on Odd DWORD

Revision 1.0b

112

1

PCI_CLK

��������AD[63::32] DATA-0H�
��C/BE[7::4]# ������BE#'s-0H

FRAM E#

REQ 64#

IRDY#

TRDY#

DEVSEL#

ACK64#

BUS
CMD

C/BE[3::0]# ATTR BE#'s-0H BE#'s-1L BE#'s-0H BE#'s-1L BE#'s-1H BE#'s-2L BE#'s-2H BE#'s-3L

ADDRESSAD[31::00] ATTR�DATA-0H DATA-1L DATA-0H DATA-1L DATA-1H DATA-2L DATA-2H DATA-3L

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 2-62: 64-bit Initiator Writing to 32-bit Target Starting on Odd DWORD,
with DEVSEL# Decode A and Two Initial Wait States

PCI_CLK

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

ACK64#

DEVSEL#

TRDY#

IRDY#

REQ64#

FRAM E#

��������AD[63::32] D ATA-0H��AD D RES SAD[31::00] ATTR -L�� D ATA-1HD ATA-0H D ATA-1L D ATA-0H D ATA-1L D ATA-0H D ATA-1L D ATA-2L D ATA-2H D ATA-3L

B US CM DC/BE[3::0]# ATTR B E#'s -0H B E#'s -1L B E#'s -1HB E#'s -0H B E#'s -1L B E#'s -0H B E#'s -1L B E#'s -2L B E#'s -2H B E#'s -3L

��C/BE[7::4]# ������B E#'s-0H

Figure 2-63: 64-bit Initiator Writing to 32-bit Target Starting on Odd DWORD,
with DEVSEL# Decode A and Four Initial Wait States

1

ADDRESSAD[31::00] ATTR

�
DATA-0H DATA-1L DATA-1H DATA-2L DATA-2H DATA-3L DATA-3H DATA-4L

��������AD[63::32] DATA-0H�BUS CM DC/BE[3::0]# ATTR BE #'s-0H BE #'s-1L BE #'s-1H BE #'s-2L BE #'s-2H BE #'s-3L BE #'s-3H BE #'s-4L

��
C/BE[7::4]#

������
BE #'s-0H

FRAM E#

REQ 64#

IRDY#

TRDY#

DEVSEL#

ACK64#

PCI_CLK

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 2-64: 64-bit Initiator Writing to 32-bit Target Starting on Odd DWORD,
with DEVSEL# Decode B

Revision 1.0b

113

1 2 3 4 5 6 7 8 9 10 11 12

PCI_CLK

ACK64#

DEVSEL#

TRDY#

IRDY#

REQ 64#

FRAM E# ��
C/BE[7::4]#

������
BE #'s-0H

��������AD[63::32] DATA-0H��
AD DRE SSAD[31::00] ATTR

��
DATA-0H DATA-1L DATA-0H DATA-1L DATA-1H DATA-2L DATA-2H DATA-3L

BU S C M DC/BE[3::0]# ATTR BE #'s -0H BE #'s -1L BE #'s -0H BE #'s -1L BE #'s -1H BE #'s -2L BE #'s -2H BE #'s -3L

13 14 15 16 17

Figure 2-65: 64-bit Initiator Writing to 32-bit Target Starting on Odd DWORD,
with DEVSEL# Decode C and Two Initial Wait States

2.13. Required Acceptance and Completion Rules for Simple
Devices

Using the terminology of PCI 2.2, a “simple device” is one that does not implement
internal posting of memory write transactions that must be initiated by the device on the
PCI-X interface.

As in conventional PCI, a simple PCI -X device is never allowed (with the exception of
Split Completions described below) to make the acceptance of a transaction as a target
contingent upon the prior completion of another transaction as an initiator. Furthermore,
a simple PCI-X device is never allowed to make the completion of a Sequence for which
it is the completer contingent upon another device completing a Sequence for which the
simple device is the requester. That is, a simple PCI-X device that has terminated a
transaction with Split Response is required to request the bus to initiate the Split
Completion for that Sequence independent of other Sequences the simple device initiates.
(This is analogous to the requirement in PCI 2.2 for simple conventional devices not to
make the completion of any transaction as a target contingent upon the prior completion
of any other transaction as an initiator.) (See Section 8.4.4 for the corresponding rule for
bridges to allow a Split Completion to pass a Split Request.)

A simple PCI-X device is permitted to terminate a memory write transaction with Retry
only for temporary conditions that are guaranteed to resolve over time. After terminating
a memory write transaction with Retry, a PCI-X device must be able to accept a memory
write transaction within 267 clocks on buses initialized to 133 MHz mode, 200 clocks on
buses initialized to 100 MHz mode, and 133 clocks on buses initialized to 66 MHz PCI-X
mode. (See Section 6.2 for a description of mode and frequency initialization.) This
corresponds to 2 µs in systems running at the maximum frequency of each mode.
Devices are permitted to limit their completion time to 2 µs independent of the frequency
of the clock. PCI 2.2 calls this the Maximum Completion Time and defines how the
number is to be measured (and also specifies a limit of 10 µs for conventional PCI
devices). This requirement applies to all devices in their normal mode of operation with
their device drivers. In its normal mode of operation, the device driver must not initiate a
memory write to the device unless the device is able to accept it within the specified
limit. This requirement does not apply to diagnostic modes or device-specific cases that
are not intended for normal use in a system with other PCI-X devices.

Revision 1.0b

114

To provide backward compatibility with PCI-to-PCI bridges designed to revision 1.0 of
the PCI-to-PCI Bridge Architecture Specification, all PCI-X devices are required to
accept memory write transactions even while executing a previous Split Transaction (that
is, after signaling Split Response and prior to initiating the Split Completion). (This is
analogous to the requirement in PCI 2.2 for conventional devices to accept memory write
transactions even while executing a Delayed Transaction.)

A simple PCI-X device that is executing a Split Transaction (as a completer) is permitted
to terminate a non-posted request with Retry until it finishes its Split Completion as an
initiator. Completers execute a finite number of Split Transactions at one time.
However, in the normal mode of operation with its device driver, a device is required to
terminate an I/O write transaction with something other than Retry within the same
Maximum Completion Time limit as specified above for memory write transactions. If
the device executes the I/O write transaction as a Split Transaction, the device must also
request the bus to execute the Split Completion within the Maximum Completion Time
limit. In its normal mode of operation, the device driver must not initiate an I/O write to
the device unless the device is able to complete it within the specified limit. This
requirement does not apply to diagnostic modes or device-specific cases that are not
intended for normal use in a system with other PCI-X devices.

A simple device is permitted to execute more than one Split Transaction (as a completer)
at the same time. In this case, the device is permitted to initiate the Split Completions for
different Sequences in any order. (Split Completions for the same Sequence must be
initiated in address order.) See Section 2.10.1 for additional details.

Revision 1.0b

115

Implementation Note: Completers Executing Multiple Split
Transactions

Devices such as host bridges that are routinely addressed by multiple other devices are
encouraged to complete multiple Split Transactions concurrently. In other applications,
devices are rarely or never addressed by a second Split Transaction before the previous
Split Transaction completes. A device for such an application benefits little from
completing multiple Split Transactions concurrently and is permitted to execute a single
Split Transaction at a time and terminate all other non-posted transactions with Retry
until it finishes its Split Completion.

If an application benefits from completing multiple transactions of one type concurrently
but not others, the device might continue to accept and execute some non-posted
transactions and terminate others with Retry. For example, if a device is designed to
complete multiple Memory Read DWORD transactions concurrently, but only a single
Configuration Read transaction, the device would signal Split Response to the first
Memory Read DWORD and Configuration Read DWORD transactions. The device
would also signal Split Response to a subsequent Memory Read DWORD transaction
that was received before the device executed the Split Completion for the first one.
However, the device would signal Retry if it received a subsequent Configuration Read
before the device executed the Split Completion for the first one.

The device driver should understand the number of each kind of transaction its device
executes concurrently. The device driver is discouraged from issuing more transactions
than the device is able to execute. If a device driver issues more requests than a device is
able to execute, the excess requests back up in bridges in the system and potentially
degrade system performance.

A simple PCI-X device is required to accept all Split Completion transactions that
correspond to the device’s outstanding Split Requests. The simple device is not
permitted to terminate a Split Completion transaction with Retry or Disconnect at Next
ADB. See Section 2.10.5 for more details.

2.14. Quiescing Device Operation

From time to time, a device’s operation must be stopped by the software so that the
device’s state can be changed. In all cases, the device must accept Split Completions
corresponding to that device’s Split Requests. If a transaction has been terminated with
Split Response, the requester must accept all the data requested (or a Split Completion
Exception message that indicates no more data is coming). If the change of state of an
otherwise normally functioning device jeopardizes that device’s ability to accept its
outstanding Split Completions, the state change must be delayed until all outstanding
transactions finish. (A device that has ceased to function normally must be reset
regardless of the state of its outstanding Split Transactions. All devices must return to
their initial states when RST# is asserted.)

Revision 1.0b

116

Examples of some situations in which the device’s state change must be delayed until all
outstanding transactions finish include the following:

• PCI hot-removal operation. The PCI HP 1.0 requires the orderly shut-down of a
device before it can be removed.

• Changing a function’s PCI Power Management state to D1, D2, or D3hot. (See
Section 3.3.)

• Software-initiated reset of the card.

How the software device driver determines that no transactions remain outstanding is not
controlled by this specification. Some example methods include the following:

• The device driver stops giving new work for the device and uses normal operational
status indicators to determine when all the old work is complete.

• The device driver sets a device-specific control bit whose function is to quiesce
device operation. The device hardware stops issuing new transactions and sets a
status indication when all outstanding transactions complete. The device driver waits
for the status indicator to be set.

2.15. Snooping PCI-X Transactions

A device is said to snoop a transaction if it monitors a transaction for which it is neither
the initiator nor the target. Snooping is most often done by diagnostic tools like bus
analyzers or system management devices. As in conventional PCI, snooping of PCI -X
transactions is allowed only if the snooping device is on the path between the requester
and the completer.

Implementation Note: Snooping PCI-X Transactions

Snooping of Immediate Transactions in PCI-X is very similar to conventional PCI. If
data is transferred, the snooping device latches the data when the target signals Data
Transfer, Single Data Phase Disconnect, or Disconnect at Next ADB.

If a write transaction is terminated with Split Response, the snooping device latches the
data during the Split Response. If the snooping agent tracks error conditions or
completion order, it must also wait for the corresponding Split Completion.

If a read transaction is terminated with Split Response, the snooping agent must capture
the command, address, and attributes during the Split Request and capture the data during
the Split Completion.

Revision 1.0b

117

3. Device Requirements

3.1. Source Sampling

Like conventional PCI, PCI-X devices are not permitted to drive and receive a signal at
the same time. The electrical design of the bus does not guarantee that the signal meets
the setup time specified in Section 9.4.2 at a pin that is driving the bus. If the state of an
input/output signal is used by logic inside a device during a clock cycle that the device is
driving the signal, an internal version of that signal must be used.

Implementation Note: Source Sampling
One approach to satisfying the requirement not to drive and receive a bus signal at the same
time, is to implement a multiplexer in the input path for any signal that the device monitors
while the device is driving the signal. PCI-X devices would receive on one input the
registered input signal from the I/O pad and on the other an internal equivalent of the signal
being driven onto the bus with the proper registered delay. The multiplexer control would be
a registered delayed version of the output enable (or equivalent) that automatically switches
the multiplexer to use the internal signal.

Figure 3-1 illustrates an implementation of the logic a PCI-X device needs when monitoring
its own signals on the bus. Notice that flip-flops F3 and F4 provide the same output register
delay as flip-flops F1 and F2, with F3 output controlling multiplexer M1 to provide the
conventional PCI source sampling requirement. In addition, for PCI-X source sampling
requirements, flip-flops F6 and F7 provide that same input register delay as flip-flop F5, with
F7 output controlling multiplexer M2. Switching between conventional PCI and PCI-X mode
is multiplexer M3, which is controlled by the PCI-X/PCI mode enable signal set at the rising
edge of RST#.

Note: Figure 3-1 is only a design aid. Designers are free to choose an equivalent
implementation that helps them meet conventional PCI setup to output delay requirements.
Details such as RST# and JTAG connection have been omitted to simplify the diagram.

P C I
LO G IC

PC I B us

Z

Logic Gates I/O Buffer

ou tpu t
enab le

IOB1

data_in

M3

PCI-X / PCI
Mode

PCI-X Feedback Enable

PCI_in

* -- All flip-flops are assumed rising edge triggered

F3
d

q ck
*

F7
d

q
ck*

PCI Feedback Enable

F4
d

q
ck*

F1
d

q
ck*

F2
d

q
ck*

M1
Sourcing

PCI

Sampled
PCI

F6
d

q
ck*

F5
d

q
ck*

Sourcing
PCI-X

M2

data_out

data_output_enable

Figure 3-1: A Logic Block Diagram for Bypassing Source Sampling

Revision 1.0b

118

3.2. Message-Signaled Interrupts

Support of message-signaled interrupts is optional for systems and system software.

PCI-X devices that generate interrupts are required to support message-signaled
interrupts and must support a 64-bit message address. Implementation of these features is
specified in PCI 2.2. Devices that require interrupts in systems that do not support
message-signaled interrupts must also implement interrupt pins.

System software must not assume that a message-capable device has an interrupt pin.
Devices that rely on polling for device service in systems that do not support message-
signaled interrupts are permitted to implement messages to increase performance in
systems that do support it.

The requester of a message-signaled interrupt transaction must set the No Snoop and
Relaxed Ordering bit in the Requester Attributes to 0.

3.3. PCI Power Management

PCI-X devices intended for use on add-in cards are required to support PCI power
management, as defined in the PCI PM 1.1. Host bridges and other devices intended for
use only on the system board are exempt from this requirement. This requirement applies
only to device hardware. Operating system requirements determine whether the device
driver software supports PCI power management. Refer to Section 12 for additional
information on implementing power management in devices.

The system is required not to change the frequency of the clock input to a device beyond
the limits stated in Section 9.4.1, even if all functions in the device are in D3hot state.

If the function is in D3hot state but RST# remains deasserted, the function must maintain
its frequency and mode information (from the PCI-X initialization pattern). (In other
words, the “soft reset” that the function performs when changing from D3hot to D0 must
not affect the mode and frequency information that was captured by the function on the
last rising edge of RST#.)

PCI-X functions in D1, D2, and D3hot are permitted to signal Split Response to a
configuration transaction only and initiate the corresponding Split Completion
transaction. (PCI PM1.1 requires functions in D1, D2, or D3hot to respond only to
configuration transactions and not initiate other transactions. This implies the function
must be quiesced before being placed in any of these states (see Section 2.14). However,
if a function in one of these states executes configuration transactions as Split
Transactions, it must initiate Split Completions.)

 Revision 1.0b

 119

4. Arbitration

This section presents requirements for bus arbitration that affect initiators and the central
bus arbiter.

4.1. Arbitration Signaling Protocol

The following PCI-X arbiter characteristics remain the same as for conventional PCI:

• No arbitration algorithm is specified. The arbiter is permitted to assign priorities
using any method that grants each initiator fair access to the bus.

• The arbiter uses the same REQ# and GNT# signals defined in PCI 2.2.

• Initiators that require access to the bus are allowed to assert their REQ# signals on
any clock.

• An initiator is permitted to issue any number of transactions as long as its GNT#
remains asserted. If GNT# is deasserted, the initiator must not start a new
transaction. (In PCI-X mode, the GNT# input is registered. When comparing PCI-X
transactions to conventional transactions, the relevant clock for GNT# is one clock
earlier in PCI-X mode than in conventional mode.)

• While a transaction from one initiator is in progress on the bus, the arbiter is
permitted to deassert GNT# to the current initiator and to assert and deassert GNT#
to other initiators (with some restrictions listed below). The next initiator cannot start
a transaction until the current transaction completes.

• Each initiator includes a Latency Timer that is loaded with a preset value each time
the initiator starts a new transaction and counts down the number of clocks that
FRAME# is asserted. If GNT# is deasserted when the Latency Timer expires, the
initiator disconnects the current transaction as soon as possible (in most cases, the
next ADB).

Implementation Note: Fair Arbitration

A fair algorithm is one in which all devices that request the bus are eventually granted the
bus, independent of other device’s requests for the bus. A fair algorithm is not required
to give equal access to every requester. The algorithm is permitted to allow some
requesters greater access to the bus than others. One example of a fair algorithm is a
multi-level round-robin algorithm in which the arbiter grants the bus to the source bridge
for every even transaction and rotates among the other requesters on the odd transactions.

A fixed-priority algorithm in which one device is always granted the bus and blocks
another device indefinitely is not fair.

The following PCI-X arbiter characteristics are different from conventional PCI:

• In PCI-X mode, all REQ# and GNT# signals are registered by the arbiter as well as
by all initiators. That is, they are clocked directly into and out of flip-flops at the
device interface.

• All fast back-to-back transactions as defined in PCI 2.2 are not permitted in PCI-X
mode.

Revision 1.0b

120

Implementation Note: Meeting REQ# and GNT# Timing
Requirements

The system must satisfy setup and hold time requirements for REQ# and GNT#
regardless of whether the bus is operating in PCI-X mode or conventional mode. One
alternative is for the arbiter of a bus that is capable of operating in PCI-X mode to clock
all REQ# signals directly into registers and clock all GNT# signals directly from
registers, regardless of whether the bus is operating in PCI-X mode or conventional
mode. Another alternative is to register REQ# and GNT# only if the bus is operating in
PCI-X mode.

4.1.1. Device Requirements

In most cases, an initiator starts a transaction by driving the AD and C/BE# buses and
asserting FRAME# on the same clock. However, if an initiator is starting a configuration
transaction, the initiator drives the AD and C/BE# buses for four clocks and then asserts
FRAME# (see Section 2.7.2.1). The following discussion uses the phrase “start a
transaction” to indicate the first clock in which the device drives the AD and C/BE#
buses for the pending transaction. The initiator of a configuration transaction has
additional restrictions before asserting FRAME#, which are described in Section 2.7.2.1.

An initiator is permitted to assert and deassert REQ# on any clock. Unlike conventional
PCI, there is no requirement to deassert REQ# after a target termination (STOP#
asserted). (The arbiter is assumed to monitor bus transactions to determine when a
transaction has been target terminated if the arbiter uses this information in its arbitration
algorithm.) An initiator is permitted to deassert REQ# on any clock independent of
whether GNT# is asserted. An initiator is permitted to deassert REQ# without initiating
a transaction after GNT# is asserted. However, if GNT# is asserted and the bus is idle in
clock N, and GNT# remains asserted, the initiator must either assert FRAME# or
deassert REQ# on or before clock N+6.

In PCI-X mode, the GNT# input is registered in the initiator. When comparing PCI-X
transactions to conventional transactions, the relevant state of GNT# is one clock earlier
in PCI-X mode than in conventional mode. In general, GNT# must be asserted two
clocks prior to the start of a transaction. This also means that the initiator is permitted to
start a transaction one clock after GNT# deasserts.

An initiator acquiring the bus is permitted to start a transaction in any clock N in which
the initiator’s GNT# was asserted on clock N-2 and either of the following conditions is
true:

Case 1. The bus was idle (FRAME# and IRDY# are both deasserted) on clock N-2.

Case 2. FRAME# was deasserted and IRDY# was asserted on clock N-3.

In the first case, there is a minimum of two idle clocks between transactions from
different initiators. In the second case, the minimum number of idle clocks is reduced to
one following initiator terminated transactions. By monitoring the transaction of the
preceding bus owner and observing when it deasserts FRAME#, the new bus owner
starts a transaction with only one idle clock.

If the above conditions are met, the initiator is permitted to start a new transaction on
clock N even if GNT# is deasserted on clock N-1.

If an initiator has more than one transaction to execute, and GNT# is asserted on the last
clock of the preceding transaction (that is, one clock before the idle clock and two clocks

Revision 1.0b

121

before the start of the next transaction), the initiator is permitted to start the next
transaction with a single idle clock between the two transactions.

All fast back-to-back transactions as defined in PCI 2.2 are not permitted in PCI-X mode.

Some devices include multiple sources of initiator activity. Examples of this include the
following:

• A multifunction device.

• A single-function device with multiple sources of initiator traffic, like a UART or
LAN controller with separate receiver and transmitter logic.

• A device that signals Split Response when addressed as a target and also initiates its
own requests. The Split Completion is a separate source of initiator activity.

If a device includes multiple sources of initiator activity, each of these sources must share
a single REQ# and GNT# signal pair. An arbiter internal to the device must determine
which source uses the bus when GNT# is asserted. This internal arbitration algorithm is
not specified but is recommended to be fair to all internal sources. If the device initiates
Split Completion transactions, they must have fair access to the bus.

4.1.2. Arbiter Requirements

If no GNT# signals are asserted, the arbiter is permitted to assert any single GNT# on
any clock.

The arbiter must provide each device a fair opportunity to initiate configuration
transactions. As described in Section 2.7.2.1, GNT# must be asserted for five clocks
while the bus is idle for the device to initiate a configuration transaction. GNT# is
permitted to be asserted for fewer than five clocks at other times, for example, if the
arbiter intends to grant the bus to a higher priority device before the bus is in the idle
state. The arbiter is permitted to assume that a device is broken, deassert GNT# to that
device, and keep it deasserted if all of the following are true:

• GNT# is asserted and the bus is idle on clock N.

• GNT# remains asserted through clock N+5.

• The device keeps FRAME# deasserted and REQ# asserted through clock N+6.

If the arbiter deasserts GNT# to one initiator, it must not assert another GNT# until the
next clock. (The first initiator is permitted to sample its GNT# on the last clock it was
asserted and assert FRAME# one clock after GNT# deasserts. In this case, GNT# to the
next initiator asserts on the same clock as FRAME# from the current initiator.)

Revision 1.0b

122

1 2 3 4 5 6 7 8 9 10 11

PCI_CLK

REQ #-A

REQ #-B

REQ #-C

G NT#-A

G NT#-B

G NT#-C

FRAM E#
Initiator A Initiator B

IRDY#

AD ADDRESS ATTRDATA DATA-0DATA DATA DATADATA

��Figure 4-1: Arbitration Example

Figure 4-1 illustrates an arbitration example switching between several initiators. The
figure shows that after the arbiter asserts GNT#, an initiator (B in the figure) must wait
for the current bus transaction to end before it can start its transaction. The figure also
shows that an initiator can start that transaction as late as one clock after its GNT# is
deasserted.

Figure 4-1 shows three initiators, A, B, and C, in increasing order of arbitration priority.
The example starts with initiator A owning the bus and wanting to keep ownership by
keeping its REQ#-A asserted. At clock 2, initiator B requests bus ownership and the
arbiter starts preemption of initiator A at clock 4 by deasserting GNT#-A and asserting
GNT#-B one clock later. At clock 5, initiator A deasserts FRAME# because the byte
count was satisfied or an ADB was reached. Also in clock 5, initiator C requests bus
ownership by asserting its REQ#-C. The arbiter deasserts the GNT# to initiator B to
grant ownership of the bus to initiator C. Initiator B observes that the previous owner
(initiator A) deasserted FRAME# on clock 5, and GNT#-B is asserted on clock 6.
Initiator B asserts FRAME# to start its transaction three clocks after FRAME#
deasserted on clock 8 allowing one idle clock for the change of bus ownership. Initiator
B starts a transaction in clock 8, even though GNT#-B is deasserted in clock 7.

If only one device requests the bus, it is recommended that the arbiter keep GNT#
asserted to that device.

Implementation Note: Cascaded Arbiters

Cascaded arbiters (that is, arbiters provided in different components and connected
together externally) are permitted only if all components of the cascade are specifically
designed to support such an arrangement.

Revision 1.0b

123

4.2. Arbitration Parking

As in conventional PCI, if no initiators request the bus, the arbiter is permitted to park the
bus at any initiator to prevent the bus signals from floating. The arbiter parks the bus by
asserting GNT# to an initiator even though its REQ# is not asserted.

If GNT# is asserted and the bus is idle for four consecutive clocks, the device must
actively drive the bus (AD[31::0] and C/BE[3::0]#) no later than the sixth clock and
PAR one clock later. (Note: Conventional PCI requires the device to drive the bus after
eight clocks and recommends driving after only two to three clocks.) The device must
stop driving the bus two clocks after GNT# is deasserted.

As in conventional PCI, if the parked initiator intends to execute a transaction, the
initiator is not required to assert REQ#. The parked initiator must assert REQ# if it
intends to execute more than a single transaction. Otherwise, it could lose the bus after
only a single transaction. A parked PCI-X initiator is permitted to start a transaction up
to two clocks after any clock in which its GNT# is asserted, regardless of the state of
REQ# (the bus is idle since it is parked).

The same PCI-X rules apply for deasserting GNT# after a bus-parked condition that
apply for other times. The arbiter cannot assert GNT# to another initiator until one clock
after it deasserts GNT# to the parked initiator. There is only one clock reserved for bus
turn-around when the bus transitions from a parked initiator to an active initiator, as
shown in Figure 4-2.

Given the above, the minimum arbitration latency (that is, the delay from REQ# asserted
to GNT# asserted) achievable from a PCI-X arbiter on an idle PCI bus is as follows:

1. Parked: zero clocks for parked agents, three clocks for others

2. Not Parked: two clocks for every agent

The arbiter must park the bus on a device that is capable of being an initiator. Target-
only devices that do not use Split Transactions are not required to implement the GNT#
pin or to be able to drive all the bus signals. The arbiter is permitted to assume that the
device is capable of being an initiator if the device ever asserts its REQ# pin.

PCI_CLK

1 2 3 4 5 6 7 8

REQ #-A

REQ #-B

G NT#-A

G NT#-B

Initiator A Park
Initiator A

FRAM E#

Figure 4-2: Initiating a Transaction While the Bus Is Parked

Revision 1.0b

124

4.3. Arbiter Coordination with the PCI Hot-Plug Controller

PCI HP 1.0 requires the Hot-Plug Controller to protect other devices and transactions
when a device is being hot-inserted or hot-removed. One of the things that most Hot-
Plug Controllers do to provide this protection is to prevent other transactions from
running on the bus during hot-plug operations.

The Hot-Plug Controller in a PCI-X system is not permitted to execute any transactions
on the bus at the rising edge of RST# after a device has been hot-inserted. (The PCI-X
initialization pattern requires the bus to be idle. See Section 6.2.) The arbiter in a PCI-X
system that supports PCI hot-plug must coordinate with the Hot-Plug Controller to allow
it to keep the bus in the idle state and to drive the PCI -X initialization pattern as required
during hot-plug operations.

4.4. Latency Timer

The Latency Timer operation in PCI-X mode differs from its operation in conventional
PCI mode in two areas, the default value in PCI-X mode and the restrictions on ending
the current transaction.

The default value loaded into the Latency Timer register in the Type 00h and Type 01h
Configuration Space header (offset 0Dh) in PCI-X mode is 64 (rather than 0 in
conventional mode). If the PCI-X initialization pattern indicates that the device is to
enter PCI-X mode at the rising edge of RST#, the Latency Timer register is initialized to
its PCI-X value. Otherwise, it is initialized to its conventional PCI value. The PCI-X
value permits PCI-X initiators to transfer data between multiple ADBs under heavy
traffic conditions and low target initial latencies. This value provides good bus
efficiency, effective sharing of the bus, and reasonable arbitration latencies in most cases.
Configuration software is discouraged from changing the Latency Timer from its default
value in PCI-X mode without a good understanding of the needs of each device in the
system and the effects such a change has on all devices.

If GNT# is deasserted when the Latency Timer expires, the device is required to
disconnect the current transaction as soon as possible. In most cases, this means the
initiator disconnects on the next ADB. However, if the Latency Timer expires during a
burst transaction less than four data phases from the ADB, the initiator does not have
enough time to deassert FRAME# for this ADB. In such cases, the initiator continues
past this ADB and disconnects on the next one.

Revision 1.0b

125

5. Error Functions

The following PCI-X error detection and response functions are the same as conventional
PCI. (Some new PCI-X requirements that are closely related to these conventional PCI
requirements are noted in parentheses.)

• All devices generate parity. Parity checking is required except for system-board-only
devices and devices that never contain any data that represents permanent or residual
system or application state (e.g., audio or video output devices).

• Even parity is used. There are an even number of ones in AD[63::32],
C/BE[7::4]#, and PAR64 for 64-bit addresses and data transfers and in
AD[31::00], C/BE[3::0]#, and PAR.

• The device driving the AD bus also drives PAR64 (for 64-bit addresses and data
transfers) and PAR.

• Parity is generated for each of the following:

 Address phases (single or dual). (PCI-X devices also generate parity for the
attribute phase.)

 All clocks of all data phases of write transactions (i.e., including target initial
wait states). (PCI-X devices also drive parity on Split Completions the same as
write transactions.)

 All data-transfer clocks of all data phases of read transactions (i.e., excluding
target initial wait states).

• The parity bit lags the AD bus by one clock. During a write transaction, the initiator
drives PAR64 (if initiating as a 64-bit device) and PAR on clock N+1 for the write
data and the byte enables it drives on clock N. (In PCI-X read data phases, the
appropriate clock for the C/BE# bus is one clock earlier than conventional PCI.)

• Address parity errors cause SERR# (if enabled).

• Initiators and targets set bits in the Status register when a parity error occurs.

• SERR# is an open-drain signal. Whenever it is asserted, it is actively driven low
synchronously with the CLK for one clock period. It is pulled up by a resistor
supplied by the system, so its rise time is permitted to span more than one clock
period.

• A device that asserts SERR# also sets the Signaled System Error bit in the Status
register.

The following items are different for PCI-X:

• Attribute parity errors cause SERR# (if enabled).

• No parity is generated or checked for the target response phase.

• During a read transaction, the target drives parity on clock N+1 for the read data it
drove on clock N and the byte enables driven by the initiator on clock N-1.

• The target of a write or Split Completion transaction must not check data parity while
it is inserting target initial wait states. It must check parity only on the data-transfer
clock.

• PERR# is asserted after a data parity error one clock later than conventional PCI.

Revision 1.0b

126

• The requester sets the Master Data Parity Error bit to record a data parity error. For
Split Completions, this is the target rather than the initiator. See Section 5.4.1 and
Section 5.4.6.

• The Data Parity Error Recover Enable bit in the PCI-X Command register enables the
system to recover from some data parity errors. See Sections 5.4.1.1 and 5.4.1.2.

The following sections provide additional details.

5.1. Parity Generation

The requirements for generation of parity in PCI-X devices are the same as for
conventional devices, except for timing, which is described below.

5.2. Parity Checking

Targets check parity for address and attribute phases. The device receiving the data
checks parity in data phases. No device checks for parity errors on the AD and C/BE#
buses in the clock following the attribute phase since PAR64 and PAR are not valid.

PCI-X devices treat parity errors in address and attribute phases the same as conventional
PCI devices treat address parity errors. The device asserts SERR# and sets the Detected
Parity Error bit in the Status register, as specified in PCI 2.2 for address parity errors.

Data parity error checking and signaling for PCI-X devices are enabled by the same
Control register bits as conventional devices. For those devices that check parity, the
following participants in a PCI-X transaction are considered to receive data and,
therefore, check data parity:

• The initiator of a read transaction that is completed immediately or is terminated with
Split Response.

• The target of a write that is completed immediately.

• The target (completer or PCI-X bridge) of a write that is terminated with Split
Response.

• The target (requester or PCI-X bridge) of a Split Completion. The target checks
parity on the read data or Split Completion Message.

5.3. Parity Timing

On any given address and attribute phase, PAR64 (for 64-bit devices) and PAR are
driven by the initiator. On any given data phase, PAR64 (for 64-bit transfers) and PAR
are driven by the device that drives the data. In all cases, the parity bits lag the
corresponding address or data by one clock.

Parity checking occurs in the clock after PAR64 and PAR are valid. If a parity error is
detected in a data phase, PERR# is asserted (if enabled) two clocks after PAR64 and
PAR are valid.

Figure 5-1 illustrates parity generation and checking on a write or Split Completion
transaction, and Figure 5-2 illustrates parity generation and checking on a read
transaction. For the write or Split Completion transaction in Figure 5-1, the initiator
drives PAR64 (for a 64-bit device) and PAR for the address phase on clock 4 and for the
attribute phase on clock 5. For these transactions, the response phase in clock 5 carries

Revision 1.0b

127

no parity and, therefore, must not be checked by the target device. The data phases
follow with the parity for each data transfer lagging by one clock as shown in clocks 7, 8,
9, and 10. If the target detects a data parity error, it asserts PERR# two clocks after the
PAR64 and PAR are valid as shown in clocks 9, 10, 11, and 12.

The initiator generates parity for write or Split Completion data phases even if the target
inserts initial wait states, which requires the initiator to toggle between two data patterns
(see Section 2.9.2). The target of a write or Split Completion transaction must not check
data parity while it is inserting target initial wait states. It must check parity only on the
data-transfer clock. (If the burst is only a single data phase long, the toggling data is not
part of the transaction.)

PC I_CLK

1 2 3 4 5 6 7 8 9 10 11 12 13

ADDRESSAD [31:0] � DATA-0 DATA-1ATTR ADDRESS ATTRDATA-2 DATA-3 ��
C/BE[3:0]# BUS CMD ATTR BUS CMD ATTRBE#'s-0 BE#'s-2BE#'s-1 BE#'s-3

PAR

PERR#

FR AM E#

IRDY#

TR DY#

DEVSEL#

14

DATA-0

BE#'s-0

�� �

Figure 5-1: Burst Write or Split Completion Transaction Parity Operation

The read transaction illustrated in Figure 5-2 begins identically to the write transaction
with the initiator driving PAR64 (if a 64-bit device) and PAR for the address phase on
clock 4 and for the attribute phase on clock 5. As in the write and Split Completion
transaction, no parity is generated for the response phase, which is also the turn-around
cycle for the read transaction. Parity generation for the data phase, however, is different
for read transactions. During a read transaction, the target drives PAR64 (if a 64-bit
transfer) and PAR on clock N+1 for the read data it drove on clock N and the byte
enables driven by the initiator on clock N-1. The C/BE# bus for burst reads is included
in the parity calculation for consistency with conventional PCI, even though the bus is
reserved and driven high by the initiator after the attribute phase. This is illustrated with
the parity at clock 7 using the AD bus driven by the target on clock 6 (DATA-0) and the
byte enables driven by the initiator on clock 5. Notice that the byte enables driven by the
initiator on clock 9 are not used in the transaction and are not protected by any parity.

Revision 1.0b

128

PCI_CLK

1 2 3 4 5 6 7 8 9 10 1211 13

ADDRESSAD DATA-0 DATA-1ATTR ADDRESS ATTRDATA-2 DATA-3

C/BE# BUS CMD ATTR BUS CMD ATTR

PAR

FRAME#

TRDY#

DEVSEL#

PERR#

IRDY#

14

DATA-0

Figure 5-2: Burst Read Transaction Parity Operation

Figure 5-3 and Figure 5-4 illustrate how the C/BE[3::0]# bus is included in parity
checking for DWORD read transactions with no wait states and DEVSEL# decode speed
A and B respectively. The C/BE[3::0]# bus for DWORD reads is included in the parity
calculation for consistency with conventional PCI, even though the bus is reserved and
driven high by the initiator after the attribute phase.

PCI_CLK

1 2 3 4 5 6 7 8 9 10 1211

ADDRE SSAD[31::00] DATA-0ATTR

C/BE[3::0]# BUS CM D ATTR

PAR

FRAM E#

TRDY#

DEVSEL#

PERR#

IRDY#

ADDRE SS ATTR

BUS CM D ATTR

�

Figure 5-3: DWORD Read Parity Operation with DEVSEL# Decode A and No
Initial Wait States

Revision 1.0b

129

PCI_CLK

1 2 3 4 5 6 7 8 9 10 1211 13

ADDRESSAD[31::00] D ATA-0AT TR

C/BE[3::0]# BUS CMD AT TR

PAR

FRAME#

TRDY#

DEVSEL#

PERR#

IRDY#

ADDR ESS ATTR

BUS CMD ATTR���
�

��

Figure 5-4: DWORD Read Parity Operation with DEVSEL# Decode B and No
Initial Wait States

Figure 5-5 and Figure 5-6 illustrate parity generation and checking on a DWORD write
transaction with DEVSEL# decode speed A and B respectively. As in a burst write, the
initiator drives PAR for the address phase on clock 4 and for the attribute phase on clock
5. No parity is generated for the response phase in clock 6, so none is checked. Data-
phase parity includes the C/BE# bus, even though that bus is driven high throughout the
data phase. Data parity must be generated for each clock that the data is required to be
stable, beginning with clock 7. If the data is required to be stable for additional clocks
because of slower DEVSEL# timing as in Figure 5-6, or because of target initial wait
states, PAR is also required to be stable for the same number of additional clocks. The
target checks PAR only one clock after the data-transfer clock and asserts PERR# two
clocks after that, if an error is detected.

Revision 1.0b

130

PCI_CLK

1 2 3 4 5 6 7 8 9 10 1211

ADDRESSAD [31::00] DAT A-0AT TR

C/BE[3::0]# BUS CMD AT TR

PAR

FRAM E#

TRDY#

DEVSEL#

PERR#

IRDY#

ADDRESS AT TR

BUS CMD AT TR���
��

�
�

�
�

����

Figure 5-5: DWORD Write Parity Operation with DEVSEL# Decode A and No
Initial Wait States

PCI_CLK

1 2 3 4 5 6 7 8 9 10 1211 13

ADDRESSAD[31::00] DATA-0AT T R

C/BE[3::0]# BUS CMD AT T R

PAR

FRAME#

TRDY#

DEVSEL#

PERR#

IRDY#

ADDR ESS ATTR

BUS CMD ATTR����
��

��
��

�
�

� �

Figure 5-6: DWORD Write Parity Operation with DEVSEL# Decode B and No
Initial Wait States

Revision 1.0b

131

5.4. Error Handling and Fault Tolerance

This section describes the requirements for PCI-X devices and their device drivers when
an error occurs.

5.4.1. Data Parity Errors

If parity checking is enabled and a device receiving data detects a data parity error, it
must assert PERR# on the second clock after PAR64 and PAR are driven (one clock
later than conventional PCI) as illustrated in Figure 5-1 and Figure 5-2.

The Master Data Parity Error (bit 8) in the conventional Status register in a PCI-X device
is set under slightly different conditions than conventional PCI devices. It is subject to
the same enabling bits in the Control registers as conventional PCI but is set in either the
initiator or target under the following conditions:

• The initiator (requester or PCI-X bridge) of a read transaction that is completed
immediately calculates a data parity error.

• The initiator (requester or PCI-X bridge) of a read transaction that is terminated with
Split Response calculates a data parity error in the Split Response.

• The initiator (requester or PCI-X bridge) of a write that is completed immediately
observes PERR# asserted three clocks after one or more of its data phases.

• The initiator (requester or PCI-X bridge) of a write that is terminated with Split
Response observes PERR# asserted three clocks after the data phase.

• The target (requester or PCI-X bridge) of a Split Completion calculates a data parity
error in either read data or a Split Completion Message.

• The target (requester or PCI-X bridge) receives a Split Completion Message that
indicates a data parity error occurred on one of this device’s non-posted write
transactions (see Section 5.4.6).

The Detected Parity Error (bit 15) bits in the Status register is set by the device whose
parity checking logic calculated the data parity error, the same as for conventional PCI.

PCI-X error handling builds on conventional PCI error functions to enable recovery from
a broader range of errors. All PCI-X devices in combination with system software and
their device drivers are required either to recover from a data parity error or to assert
SERR#. By requiring the device and/or software to recover from the error or to assert
SERR#, the system is freed from the assumption that data parity error conditions are
always catastrophic to the system.

Devices are allowed to attempt to recover from a data parity error only under control of
the software. Only the device driver has the necessary information to determine what is
appropriate and necessary to repeat and what is not. For example, a read transaction from
a location that has side effects cannot be repeated by itself and get the same results. The
following sections list the requirements for devices and software drivers in PCI-X mode
that are designed to support data parity error recovery and for devices and software
drivers that are not (and assert SERR#).

The requirements for a PCI-X device that is operating in conventional PCI mode are
governed by PCI 2.2.

Revision 1.0b

132

5.4.1.1. Devices and Software Drivers that Support Data Parity Error
Recovery

When RST# is asserted, all PCI-X devices clear the Data Parity Error Recovery Enable
bit in the PCI-X Command register. If the operating system loads a software device
driver that supports data parity error recovery, either the device driver or system software
is required to set the bit as specified by the operating system vendor.

The device that originated the Sequence that experienced a data parity error (that is, the
device that sets the Master Data Parity Error bit as described in Section 5.4.1) is required
to notify its device controlling software. The device is allowed to attempt to recover
from the error only under control of the software.

The operating system vendor must specify the requirements of the controlling software
after a data parity error. The operating system commonly provides an API for the device
driver to report such errors to the operating system. In some cases, the operating system
vendor specifies that the device driver must perform actions to recover from the error.
For example, the following non-exhaustive list illustrates what the operating system
vendor might require the device driver to do:

• Reschedule the failing transaction

• Notify the user of the failing transaction

• Reinitialize the card and continue

• Take the card off-line

• Shut down the operating system

The operating system vendor must also specify how the PERR# status bits, Master Data
Parity Error and Data Parity Error Detected, in device and bridge Status registers are to
be treated by system software after recovery from a data parity error. If these bits are to
be cleared, the operating system vendor must specify what software is responsible for
clearing them.

5.4.1.2. Devices or Software Drivers That Do Not Support Data Parity
Error Recovery

When RST# is asserted, all PCI-X devices clear the Data Parity Error Recovery Enable
bit in the PCI-X Command register. System software that does not attempt to recover
from data parity errors leaves this bit in its default state.

In addition to the requirements specified in Section 5.4.1, a PCI-X device asserts SERR#
(if enabled) after a data parity error if both of the following are true:

• The Data Parity Error Recovery Enable bit in the PCI-X Command register is
cleared.

• A data parity error occurred that caused the device to set the Master Data Parity Error
bit (see Section 5.4.1).

As in conventional PCI, a system-specific service routine is activated as a result of the
SERR# assertion. The SERR# service routine is allowed to treat an SERR# assertion
as a catastrophic exception that will ultimately result in a system halt.

Revision 1.0b

133

Implementation Note: Alternative Platform-Specific Recovery
Routines for Data Parity Errors

Some systems provide platform-specific routines to recover from data parity errors from
a selected list of devices. For these PCI-X systems, the following recommendation is
provided.

Systems that support PERR# recovery using platform-specific recovery routines provide
system-specific ROM software that at power-up sets the Data Parity Error Recovery
Enable bit in the PCI-X Command register for the selected set of PCI-X devices
(assumed to be supported on all PCI-X bus segments). PCI-X devices with this bit set do
not assert SERR# as a result of a data parity error but assert PERR# as conventional
PCI devices do. The platform-specific service routines execute the platform-specific data
parity error recovery routines before returning control to the operating system.

5.4.1.3. Data Parity Errors in Split Response for Read Transactions

If an initiator (requester or bridge) calculates a data parity error when the target
(completer or bridge) signals Split Response for a read transaction, the initiator must
record the error as described in Section 5.4.1. Furthermore, if the initiator is enabled to
assert PERR# and does not support recovery from data parity errors (i.e., Data Parity
Error Recover Enable bit in the PCI-X Command register is cleared), the device must
also assert SERR# (if enabled).

If the device supports recovery from data parity errors and the Data Parity Error
Recovery bit is set, the device is permitted to report and recover from errors in the Split
Response differently from errors in the corresponding Split Completion.

Implementation Note: Recovering from Data Parity Errors in Split
Response

A data parity error in a Split Response indicates the existence of a serious problem in the
system, but does not imply that the read data in the subsequent Split Completion is
erroneous. It is possible that the read data in the subsequent Split Completion will arrive
without error. However, most causes of parity errors affect more than a single
transaction, so implementation of significant hardware and software to recover from this
special case is probably not justified.

Devices may optionally report the occurrence of a data parity error in a Split Response by
setting a unique status bit in a device-specific register. If the device is enabled by its
driver and system software to recover from data parity errors, the device might recover
from errors in a Split Response differently from errors in the Split Completion. For
example, an error in a Split Response alone might not require the transaction to be
repeated, whereas an error in a Split Completion would require one or more transactions
to be repeated.

If a device issues an interrupt as a result of a data parity error on a Split Response, it is
recommended that the interrupt not be issued until the Sequence is complete. Otherwise,
it would theoretically be possible for the interrupt service routine to execute before the
last data of the Split Completion arrives at the requester. Although this is highly unlikely
because Split Transactions normally complete in much less time than is required for the
CPU to acknowledge an interrupt, the potential problem is avoided if the interrupt is
delayed until the completion of the Sequence.

Revision 1.0b

134

5.4.2. Target-Abort and Master-Abort Exceptions

The initiator of a transaction other than a Split Completion is required to notify its device
driver via interrupt or other suitable means whenever a Target-Abort or Master-Abort
occurs (except those cases defined in PCI 2.2 in which a Master-Abort does not indicate
an error condition, like configuration or Special Cycle transactions). If notification of the
device driver is not possible, the initiator must assert SERR# (if enabled) and update its
Status register. See Section 5.4.4 for errors that occur on Split Completion transactions.

5.4.3. Address and Attribute Parity Errors

A PCI-X target that detects a parity error in the address or attribute phase of any
transaction must assert SERR# and set status bits as defined for address parity errors in
PCI 2.2. If the device’s address decode logic indicates that the device is selected, the
device has the same options for ignoring (Master-Abort) or executing the transaction as
conventional PCI devices with address parity errors. As described in PCI 2.2, if the
device asserts DEVSEL# prior to detecting a parity error in the address or attribute
phase, the device has the option either to complete the transaction as if no error occurred
or to signal Target-Abort (even if the transaction is a Split Completion). If the error
occurred in the attribute phase and the device terminates the transaction with Split
Response, the device must discard the transaction and assert SERR# (if enabled). (An
error in the attribute phase means it is unlikely that a Split Completion could be routed
properly back to the requester.)

5.4.4. Split Transaction Errors

Errors are possible in three different phases of a Split Transaction: during the Split
Request, during the execution of the request by the completer, and during the Split
Completion.

The completer is permitted to signal Split Response to a DWORD write either before or
after it checks for data parity errors. (See Section 8.7.1.2 for the requirements for a
bridge.) If the completer detects the data parity error on a DWORD write transaction and
signals Data Transfer (an Immediate Transaction), the completer asserts PERR#. If the
completer detects a data parity error on a DWORD write transaction and signals Split
Response, the completer asserts PERR# and generates the appropriate Split Completion
Message (see Section 2.10.6.2). All other error conditions for Split Requests are handled
by the initiator as they would be for an Immediate Transaction.

Abnormal conditions are also possible in the second phase of a Split Transaction after the
completer has terminated a transaction with Split Response termination. If such a
condition occurs, the completer is required to notify the requester of the abnormal
condition by sending a Split Completion Message as described in Section 2.10.6.

A variety of abnormal conditions are possible during the third phase of the Split
Transaction, which is the Split Completion transaction. If the Split Completion
transaction completes with either Master-Abort or Target-Abort, the requester (or
intervening bridge) is indicating a failure condition that prevents it from accepting the
completion it requested. In this case if the Split Request is a write or if it addresses a
location that has no read side effects, the completer must decide whether the error causes
a risk to the integrity of the system. If the completer decides that the error does not cause
a serious risk to the integrity of the system, the completer discards the Split Completion
and takes no further action (not set the Split Completion Discarded bit and not assert
SERR#, however, the completer is permitted to record the condition for diagnostic

Revision 1.0b

135

purposes using device-specific means). If the completer decides that the error causes a
serious risk to the integrity of the system, the completer must discard the Split
Completion, set the Split Completion Discarded bit in the PCI-X Status register, and
assert SERR# (if enabled). If the Split Request is a read and the location has read side
effects, the completer must discard the Split Completion, set the Split Completion
Discarded bit in the PCI-X Status register, and assert SERR# (if enabled). In none of the
above cases does the completer set the Received Master-Abort or Received Target-Abort
bits in the Status register, since the completer is not the original initiator of the Sequence.
The completer behaves as an initiator for setting all other Status register bits.

Implementation Note: Abnormal Termination of Split Completion
Transactions

A Split Completion normally terminates with Data Transfer. A properly functioning
requester in a properly functioning system takes all the data indicated by the byte count
of the original Split Request without signaling Target-Abort or allowing a Master-Abort.

For completeness, the completer’s response to the abnormal terminations, Master-Abort
and Target-Abort, is specified. The transaction would terminate with Master-Abort if the
requester did not recognize the Sequence ID of the Split Completion. This can occur
only under error conditions. The Split Completion would terminate with Target-Abort
only if the requester encountered an internal error that prevented it from guaranteeing the
integrity of data in the system. (See Section 2.10.5.)

If the requester detects a data parity error during a Split Completion, it asserts PERR#
and sets bit 15 (Detected Parity Error) in the Status register. The requester also sets bit 8
(Master Data Parity Error) in the Status register, because it was the original initiator of
the Sequence (even though the requester is the target of the Split Completion).

5.4.5. Corrupted or Unexpected Split Completions

Several scenarios are possible if a Split Completion becomes corrupted. For example, if
the Requester ID of a Split Completion becomes corrupted, it is possible that it matches
that of another device in the system. Furthermore, if the Requester ID of a Split
Completion is accurate but the Tag becomes corrupted, the requester is unable to match
the Split Completion to its Split Request. Also, if the byte count of a Split Completion
becomes corrupted, the requester either receives more data than the original request, or
not enough.

A device may optionally assert DEVSEL# if the Requester ID matches that of the
device, but the Tag does not match any outstanding requests from this device. That is, a
device is permitted to ignore the Tag when deciding whether to assert DEVSEL#.
Alternatively, the device may choose to ignore the corrupted transaction (not assert
DEVSEL#) if the Tag does not match any outstanding request from this device. For
example, a device that never initiates transactions, or that has no transactions outstanding
at the moment, might choose this option.

If a requester asserts DEVSEL# for a Split Completion, but the Tag does not match any
that the requester currently has outstanding, the transaction is identified as an unexpected
Split Completion. The requester is required to accept the Split Completion transaction in
its entirety and discard the data. In addition to discarding the data, the device must set
the Unexpected Split Completion status bit in the PCI-X Status register.

Valid values for the Lower Address field in the Split Completion Address and byte count
in the Completer Attributes are specified in Sections 2.10.2, 2.10.3, and 2.10.4. If the
Sequence ID of a Split Completion matches that of an outstanding request, but the Lower

Revision 1.0b

136

Address field or the byte count is not valid, the requester is required to accept the Split
Completion transaction in its entirety (as determined by the invalid address and byte
count). A corrupted address or byte count in a Split Completion does not justify
signaling Target-Abort, even if the invalid byte count is larger than the byte count of the
original request. The requester is not required to detect this case. However, if it does, it
discards the entire Split Completion and sets the Unexpected Split Completion status bit
in the PCI-X Status register.

Other than setting the Unexpected Split Completion status bit, the method by which a
device reports a corrupted or unexpected Split Completion to its device driver is not
specified.

5.4.6. Reporting Split Completion Error Messages

A device (other than a bridge) that receives a Split Completion Message with the Split
Completion Error attribute bit set must set the Received Split Completion Error Message
bit in its PCI-X Status register.

A device (requester or bridge) that receives a Split Completion Message that reports an
error condition that corresponds to non-posted write data parity errors, Master-Abort
conditions, and Target-Abort conditions must set the corresponding bit in the
conventional Status register (or Secondary Status register in a bridge). Other Split
Completion error messages are reported via device-specific means that are beyond the
scope of the PCI-X definition. Table 5-1shows what bits in the Status register or
Secondary Status register must be set when a requester or bridge receives these messages.

Table 5-1: Reporting the Receipt of Split Completion Error Messages

Message
Class

Message
Index

Message
Description

Bits Set in Status Register or
Secondary Status Register

1 00h Master-Abort Received Master-Abort
1 01h Target-Abort Received Target-Abort
1 02h Write Data

Parity Error
Master Data Parity Error

2 00h Byte Count
Out of Range

none

2 01h Split Write
Data Parity
Error

Master Data Parity Error

2 8Xh Device-
Specific

none

Furthermore, if a bridge forwards upstream a Split Completion Message indicating the
occurrence of a Target-Abort (Class 1, Index 01h), it must set the Signaled Target-Abort
bit in the Status register. If a bridge forwards downstream such a transaction, it must set
the Signaled Target-Abort bit in the Secondary Status register.

Revision 1.0b

137

Implementation Note: Setting Status Bits when Forwarding Split
Completion Error Messages

Split Completion Messages that report the occurrence of errors that correspond to
equivalent errors in conventional PCI mode have the same effect on a device’s Status
register as if the error had occurred on an Immediate Transaction. Furthermore, these
messages have the same effect on a bridge’s Status register and Secondary Status register
as a similar error would if the bridge interfaces were operating in conventional mode.
This means, for example, that a requester that receives a Split Completion Message
indicating the detection of a data parity error on a non-posted write transaction must set
the Master Data Parity Error bit as if the error occurred on the immediate completion of
the transaction and was indicated by the assertion of PERR# by the target. Also, a
bridge that forwards this message must set its Master Data Parity Error bit on the
interface that receives the message. This corresponds to the requirement in Bridge 1.1 for
a device that forwards a non-posted write as a Delayed Transaction. If such a bridge
detects a data parity error on the destination bus, the bridge must set the Master Data
Parity Error bit for that bus and must return the error to the requester by asserting
PERR# on the requester-side interface when the requester repeats the transaction. (If the
requester-side bus were in conventional PCI mode the assertion of PERR# would cause
the requester to set its Master Data Parity Error bit.)

By setting the error status bits the same way regardless of whether the buses are in PCI-X
mode and use Split Transactions or the buses are in conventional mode and use Delayed
Transactions, the error analysis software can implement a single algorithm to identify the
devices involved with a data parity error on a non-posted write transaction.

Revision 1.0b

138

Revision 1.0b

139

6. System Interoperability and Initialization

6.1. Interoperability

6.1.1. Device and Add-In Card Interoperability Requirements

PCI-X devices must meet the 33 MHz protocol and timing requirements of PCI 2.2 when
operating in that mode. PCI-X devices may optionally meet the 66 MHz timing
requirements of PCI 2.2.

The protocol and electrical requirements for PCI-X 133 devices and PCI-X 66 devices is
identical except for the maximum operating frequency. The operating frequency range
for PCI-X 133 devices is a superset of the range for PCI -X 66 devices (see Section 9.4.1).

Implementation Note: Minimum Bandwidth for Application

PCI-X devices are required to operate when installed in any PCI-X or conventional PCI
bus down to conventional 33 MHz mode, 32-bits wide. However, some applications
require a minimum bus bandwidth to perform their intended function. In some
applications, it may be clear that some of the slower PCI modes or frequencies do not
provide this bandwidth. At the middle frequencies, the application may have sufficient
bandwidth only if there is no conflict with other devices.

If the slower PCI modes or frequencies clearly do not provide the minimum bandwidth
required by the application, the device driver should detect these cases by determining in
what mode the device initialized and report any obvious problems to the user. If the
device requires restrictions on other devices when used in some PCI or PCI-X modes and
frequencies, the device vendor should provide guidelines to the user as to what other
devices should be installed on the same bus.

PCI-X devices use 3.3V I/O signaling levels defined in Section 9.1 (compatible with that
defined in PCI 2.2) when operating in PCI-X mode. PCI-X devices optionally also
support the 5V I/O signaling levels defined in PCI 2.2 when operating in 33 MHz
conventional PCI mode. PCI-X add-in cards must be keyed either for 3.3V I/O or
Universal I/O as defined in PCI 2.2.

6.1.2. System Interoperability Requirement

If a bus includes at least one 33 MHz conventional device, the bus must operate in
conventional 33 MHz mode. If only conventional 66 MHz devices are present in slots on
the bus, a PCI bus optionally operates either in conventional 66 MHz mode or
conventional 33 MHz mode. (PCI 2.2 permits 33-MHz-mode buses to operate at any
frequency below 33 MHz and 66-MHz-mode buses to operate at frequencies between
33 and 66 MHz, if required because of bus loading.)

If a bus includes only PCI-X devices, the bus operates in PCI-X mode. If the bus
includes at least one PCI-X 66 device, the maximum clock frequency is 66 MHz. If the
bus contains only PCI-X 133 devices, the maximum clock frequency is 133 MHz. PCI-X
systems are permitted to limit bus frequency to a value lower than the nominal down to
the minimum specified in Section 9.4.1. This is generally done to support higher loading
on the bus. For example, a bus with two expansion slots would typically operate at
100 MHz.

Revision 1.0b

140

6.1.3. Interoperability Matrix

Figure 6-1 shows the interoperability matrix for variations of system and add-in card
operation mode and frequency capability.

Conventional PCI Cards PCI-X Cards1

Systems

33 MHz
(5V I/O)

33 MHz
(3.3V I/O
or
Universal)

66 MHz
(3.3V I/O
or
Universal)

66 MHz
(3.3V I/O or
Universal)

133 MHz
(3.3V I/O or
Universal)

33 MHz
(5V I/O)
10 ns2,3

33
(5V I/O)

33
(5V I/O)

33
(5V I/O)

33
(5V I/O)

33
(5V I/O)

Conventional
System

33 MHz
10 ns2

33 33 33 33

66 MHz
5 ns2

33 66 a) 335

b) 66
a) 335

b) 66

66 MHz
9 ns2

33 a) 334,6

b) 66
66 66

PCI-X
System

100 MHz
4.5 ns2

33 a) 334

b) 66
66 100

133 MHz
2 ns2

33 a) 334

b) 66
66 133

Figure 6-1: Interoperability Matrix for Frequency and I/O Voltage

Legend:

xx Conventional PCI system or add-in card operating in conventional mode
xx = nominal clock frequency in MHz

xx PCI-X system and add-in card operating in PCI-X mode
xx = nominal clock frequency in MHz

xx Most popular cases

Notes:
1. Unless otherwise specified, all cases use an I/O signaling voltage of 3.3 V.
2. Time indicates maximum value of Tprop for the system shown. 33 MHz and 66 MHz values

are taken from PCI 2.2. PCI-X values come from Table 9-11.
3. Most systems shipped prior to the development of the PCI-X definition fall into this row. 5V I/O

and Universal I/O cards work here but not 3.3V I/O cards.
4. PCI-X systems optionally operate in 33 MHz mode or 66 MHz mode when only 66 MHz

conventional PCI cards are installed.
5. PCI-X devices must support conventional 33 MHz timing and may optionally support

conventional 66 MHz timing.
6. A bus designed for PCI-X 66 MHz operation generally has too many loads to support

conventional 66 MHz timing.

 Revision 1.0b

 141

6.2. Initialization Requirements

PCI-X systems inform devices of the width of the bus by the state of REQ64# at the
rising edge of RST# as specified in PCI 2.2.

Add-in cards indicate whether they support PCI-X, and if so which frequency, by the way
they connect one pin called PCIXCAP. If the card’s maximum frequency is 133 MHz, it
leaves this pin unconnected (except for a decoupling capacitor specified in Section 9.10).
If the card’s maximum frequency is 66 MHz, it connects PCIXCAP to ground through a
resistor (and decoupling capacitor) specified in Section 9.10. Conventional cards connect
this pin to ground. See Section 14 for recommendations for circuits to detect the types of
cards connected to PCIXCAP.

An add-in card indicates its capability with one of the combinations of the M66EN and
PCIXCAP pins listed in Table 6-1.

Table 6-1: M66EN and PCIXCAP Encoding

M66EN PCIXCAP Conventional
Device Frequency
Capability

PCI-X Device
Frequency Capability

Ground Ground 33 MHz Not capable
Not
connected

Ground 66 MHz Not capable

Ground Pull-down 33 MHz PCI-X 66 MHz
Not
connected

Pull-down 66 MHz PCI-X 66 MHz

Ground Not
connected

33 MHz PCI-X 133 MHz

Not
connected

Not
connected

66 MHz PCI-X 133 MHz

The source bridge places all devices on that segment in PCI-X mode or conventional
mode by driving a particular combination of control signals on the bus at the rising edge
of RST#. If FRAME# is deasserted and IRDY# is deasserted (i.e., the bus is idle) and
one or more of DEVSEL#, STOP#, and TRDY# are asserted at the rising edge of
RST#, the device enters PCI-X mode (see Table 6-2). Otherwise, the device enters
conventional PCI mode at the rising edge of RST#. The combination of FRAME#,
IRDY#, DEVSEL#, STOP#, and TRDY# at the rising edge of RST# is called the
PCI-X initialization pattern.

Revision 1.0b

142

Table 6-2: PCI-X Initialization Pattern

DEVSEL# STOP# TRDY# Mode Max
Clock
Period
(ns)

Min
Clock
Period
(ns)

Min
Clock
Freq
(MHz)
(ref)

Max
Clock
Freq
(MHz)
(ref)

Deasserted Deasserted Deasserted Conventional 33 ∞ 30 0 33

Conventional 66 30 15 33 66

Deasserted Deasserted Asserted PCI-X 20 15 50 66

Deasserted Asserted Deasserted PCI-X 15 10 66 100

Deasserted Asserted Asserted PCI-X 10 7.5 100 133

Asserted Deasserted Deasserted PCI-X Reserved Reserved Reserved Reserved

Asserted Deasserted Asserted PCI-X Reserved Reserved Reserved Reserved

Asserted Asserted Deasserted PCI-X Reserved Reserved Reserved Reserved

Asserted Asserted Asserted PCI-X Reserved Reserved Reserved Reserved

The PCI-X initialization pattern also informs the devices of the frequency range of the
clock as shown in Table 6-2. Systems with a nominal clock frequency of 66 MHz
indicate the 50-66 MHz range, and systems with a nominal clock frequency of 100 MHz
indicate the 66-100 MHz range.

The system must not generate reserved PCI-X initialization patterns. Behavior of devices
is not specified if they are initialized with a reserved PCI-X initialization pattern.

The remainder of this section explains the system initialization requirements both for
devices and the system and explains interoperability requirements between PCI-X and
conventional PCI devices.

6.2.1. Device and Add-in Card Initialization Requirements

PCI-X devices enter conventional or PCI-X mode based on the PCI-X initialization
pattern, as defined in Table 6-2, at the rising edge of RST#. The device must select all
state-machines, PLL lock ranges, and electrical differences between conventional and
PCI-X based on this pattern at the rising edge of RST#. When the system powers up,
FRAME#, IRDY#, DEVSEL#, STOP#, and TRDY# may be indeterminate while power
supply voltages are rising but are stable before the last rising edge of RST#. Devices are
permitted combinatorially to change between conventional and PCI-X mode while RST#
is asserted as determined by the value of the PCI-X initialization pattern.

Revision 1.0b

143

Implementation Note: Switching to PCI-X Mode

While RST# is asserted, the PCI-X definition requires all state machines to reset and re-
lock any PLLs, if necessary, because a frequency change is possible. Figure 9-14
illustrates this mode switching reset condition and Table 9-5 lists its timing requirements.

Since the PCI clock is not required to be stable throughout the time that RST# is
asserted, PCI-X devices must latch their mode independent of the PCI clock. Figure 6-2
illustrates an example of the logic to support this requirement. The output of this latch is
the device’s PCI-X mode signal. This signal is used to switch all PCI I/O buffers and
PCI interface logic to support PCI-X protocol.

The figure shows a transparent latch that allows the PCI-X mode signal to pass through
the latch while RST# is asserted. This implementation removes any critical timing issues
that may arise if the signal is heavily loaded, controlling all I/O buffers, clocking logic
(PLL), and state machine. The design assumes an asynchronous delay element in the
PCI-X initialization pattern decode block connected to the latch input. This delay
element provides ASIC register hold time after the rising edge of RST#.

transparent
latch

Q

D

PCI-X
initialization

pattern
decode

PCI-X_mode_en

TRDY#

STOP#

DEVSEL#

FRAM E#

IRDY#

EnRST#

Figure 6-2: PCI-X Mode Latch

The PCI-X initialization pattern informs the device of the operating frequency range of
the clock, as indicated in Table 6-2, if the bus is operating in PCI-X mode. (When in
conventional mode, the device uses M66EN as specified in PCI 2.2 to determine
operating frequency.) The device uses this information to optimize internal options that
are a function of the clock frequency, e.g., DEVSEL# decode timing or PLL range
parameters. PCI-X bridges are permitted to use this information from their primary bus
to optimize the clock divider that generates the secondary clock frequency.

A device’s bus interface state machines (i.e., initiator state machines, target state
machines, etc.) must ignore any combination of the assertion of DEVSEL#, STOP#, and
TRDY# while FRAME# and IRDY# are deasserted (i.e., the bus is idle). If a PCI-X
device is hot-inserted onto the bus, the Hot-Plug Controller asserts some or all of these
target signals when it drives the PCI-X initialization pattern on the bus to initialize the
new device. Devices for which RST# is already deasserted (i.e., devices that are already
connected to the bus) must ignore this pattern that is being applied for the benefit of the
device with RST# asserted (i.e., the device being hot-inserted).

As in conventional PCI, if the clock frequency is higher than 33 MHz, it is guaranteed not
to change (beyond the limits of Spread Spectrum Clocking specified in Section 9.4.1)
except while RST# is asserted. If a PCI-X device uses a PLL on the input clock, that
PLL cannot be enabled in conventional 33 MHz mode. It can only be enabled in PCI-X
mode (as determined by the PCI-X initialization pattern at the rising edge of RST#) or in
conventional 66 MHz mode (as determined by the state of M66EN at the rising edge of
RST#). The device must detect PCI-X mode and conventional 66 MHz mode separately
and enable its PLL appropriately.

Revision 1.0b

144

Implementation Note: Internal and External PLLs

A design can implement a PLL either inside or outside the device. If the PLL is inside
the device, the device requires an M66EN input pin to determine whether to enable the
PLL in conventional PCI mode. If the PLL is external to the device, the device requires a
“PCI-X mode” output pin to enable the PLL in PCI-X mode, since PCI-X mode is
controlled by the states of several bus control signals at the rising edge of RST#.

6.2.2. System Initialization Requirements

The system is required at power-up to determine the proper operating mode for the bus
and to apply the appropriate PCI-X initialization pattern to the bus before the rising edge
of RST#. See Section 6.1.2 for the operating requirements of the system as a function of
what devices are present on the bus. The timing requirements for the PCI-X initialization
pattern are shown in Figure 9-14. Timing parameter values are shown in Table 9-5 along
with the other RST# timing parameters. Because the system knows that all power supply
voltages are within their respective tolerances, the system is permitted to actively assert
and deassert the appropriate signals of the PCI-X initialization pattern. Alternatively, the
system is permitted to drive only those signals in the PCI-X initialization pattern that are
to be asserted and allow the bus pull-up resisters to deassert the rest.

The system is also required to apply the PCI-X initialization pattern with the same timing
requirement any other time RST# is asserted on this bus; e.g., if software sets a control
bit in the source bridge that asserts RST# to the bus.

A system that does not support hot-plug PCI-X slots is permitted to bus PCIXCAP for all
of the slots and sense its state with a single circuit (see Section 14). A system that
supports hot-plug PCI-X slots must provide a means for the Hot-Plug System Driver to
determine the states of the PCIXCAP pins for each hot-plug slot it controls without
powering on the slot.

6.2.3. Mode and Frequency Initialization Sequence

Mode and frequency initialization requirements are very similar for host bridges and
PCI-X bridges. PCI-X bridge requirements are presented in Section 8.9.

6.2.3.1. System Power-Up

The system and a PCI-X host bridge initialize the devices on the PCI bus as follows:

1. Apply power to all devices on the bus. While the power supply voltages are
stabilizing, float the bus control signals that are included in the PCI-X initialization
pattern (as required by PCI 2.2) and assert RST#. The pull-up resistors on these
signals deassert them. To prevent AD, C/BE#, and PAR signals from floating while
RST# is asserted, the central resource optionally drives these signals while RST# is
asserted, but only to a logic low level. They may not be driven high.. When the
power supply indicates that all of the supply voltages are within the proper
tolerances, proceed to the next step.

2. Sense the states of PCIXCAP and M66EN for all devices on the bus.

3. Select the appropriate mode and clock frequency for the cards present on this bus as
described in Section 6.1.2.

Revision 1.0b

145

4. If the mode is to be 33 MHz conventional PCI, deassertM66EN for all devices on
the bus. (This requirement is automatically met if M66EN is bused for all devices on
the bus.)

5. Apply the PCI-X initialization pattern (from Table 6-2) on the bus.

6. Deassert RST# to place all devices on the bus in the appropriate mode.

Implementation Note: Mode and Frequency Initialization Sequence
for a Bus that Includes Hot-Plug Slots

In some cases, a source bridge for a bus that includes PCI hot-plug slots must initialize
the bus in a different manner from a non-hot-plug bus. In some hot-plug platforms that
support conventional 66 MHz mode, the bridge cannot determine whether conventional
add-in cards are capable of 66 MHz operation without first powering up the cards to read
the M66EN pin or to read the 66 MHz Capable bit in the device’s Status register.
Powering up a hot-plug slot generally requires the use of the PCI Hot-Plug Controller. If
the Hot-Plug Controller is a device on the same bus or a subordinate bus to the one being
initialized, the bus must be initialized twice as described below.

When such a system is first powered up, the clock frequency must be set to 33 MHz (or
lower) and the bus must be set to conventional mode. In other words, at the first rising
edge of RST#, the PCI-X initialization pattern must select conventional mode, and
M66EN must be deasserted for all slots. System software then turns on all conventional
slots and determines whether each is capable of 66 MHz operation. If a conventional
33 MHz card is found, no further action is required since the bus is already operating in
that mode. However, if no conventional 33 MHz cards are found, RST# for this bus
must be asserted again, and the clock frequency must be changed as appropriate for the
system and the capabilities of the devices found there. The bridge then drives the
appropriate PCI-X initialization pattern and deasserts RST# as described above for
bridges without hot-plug slots.

6.2.3.2. Hot Insertion in a PCI-X System

As described in the PCI HP 1.0, add-in cards cannot be connected to a bus whose clock is
operating at a frequency higher than the card can tolerate. Without connecting the card to
the bus, the Hot-Plug System Driver must determine the maximum frequency capability
of the card. (Applying power to the card is acceptable but connecting it to the bus is not.)

The add-in card uses the M66EN pin and the PCIXCAP pin (as described in Table 6-1)
to indicate its capabilities. If the slot supports conventional 66 MHz timing, PCI HP 1.0
requires the Hot-Plug System Driver to determine the state of M66EN for each slot.
PCI-X systems that include hot-plug slots must enable the Hot-Plug System Driver to
determine the state (open, pull-down, or ground) of the PCIXCAP pin of each slot (see
Section 14). The Hot-Plug System Driver must not connect a slot to a bus if the clock is
too fast for the card, or if the card does not support the current operating mode of the bus.

If a PCI-X-capable card is hot-inserted onto a bus that is operating in PCI-X mode at an
acceptable frequency, the Hot-Plug Controller must drive the PCI-X initialization pattern
on the bus with the proper timing prior to the rising edge of RST# for that slot.

Revision 1.0b

146

6.2.4. Device Number and Bus Number Initialization

As described in Section 7.2.4, each function of a PCI-X device includes a Device
Number and a Bus Number register. These registers store the device number and bus
number used by the device in its Requester ID and Completer ID.

All bits in these registers are set to ones when RST# is asserted. After RST# is asserted
and deasserted to a device, the system must initialize these registers by executing a
Configuration Write transaction that addresses the device. As described in Section 7.2.4,
each time the device is addressed by a Configuration Write transaction, the device stores
the device and bus number from the configuration address and attributes (see
Section 2.7.2.2) in the registers.

When the system is first initialized, system configuration software writes to the
Configuration Space of each device of each PCI bus in the system as part of its normal
system initialization process. The Device Number and Bus Number registers are
automatically initialized when the software writes to each device’s Configuration Space.
Similarly, after RST# is asserted and deasserted for any other reason, system
configuration software must reinitialize the device’s Configuration Space, and in the
process automatically initialize the Device Number and Bus Number registers. For
example, after a power-management event that includes the assertion of RST#, or after a
hot-insertion event, system configuration software must initialize the devices’
Configuration Space and in so doing automatically initializes the Device Number and
Bus Number registers.

If system configuration software changes the number assigned to a PCI bus segment
operating in PCI-X mode, that software must also execute Configuration Write
transactions to each device on that bus to update the Bus Number registers in those
devices. See for example the requirements for the Secondary Bus Number register in a
PCI-X bridge in Section 8.6.1.

Revision 1.0b

147

Implementation Note: Initiating Transactions Before the Bus and
Device Number Registers are Initialized

The Bus Number and Device Number registers are initialized by Configuration Write
transactions to the device. Before a device initiates any transaction other than a Split
Completion, system configuration software must set the Bus Master bit by executing a
Configuration Write transaction to the device’s Command register (as defined in
PCI 2.2). This write to the Command register initializes the Bus Number and Device
Number registers.

PCI-X devices initiate Split Completion transactions independent of the state of the Bus
Master bit. If a device executes Configuration Read transactions as Split Transactions,
the device responds to the first Configuration Reads before the Bus Number and Device
Number registers are initialized. In this case, the Completer ID in the attribute phase of
these Split Completions use the uninitialized values of these registers. Although this is
unusual and diagnostic equipment must be prepared to accept this case, the Requester ID
(from the Split Request) is used for routing of the Split Completion, so the transaction
completes properly.

If a device initiates transactions on a bus that has not been initialized by system
configuration software, that device must not allow a Split Transaction to be executed with
an ambiguous Requester ID. For example, if a system management device discovers that
a system has failed during the boot process and the system management device initiates
transactions on the bus to determine the cause of the failure, the system management
device must avoid ambiguous Requester IDs in those transactions. One alternative to
avoid ambiguous Requester IDs is for the system management device to assign itself one
Requester ID and initiate Configuration Write transactions to all the other devices on the
bus to assign them different Requester IDs. Another alternative would be for the system
management device to assert RST# and initialize the bus in conventional PCI mode
(which does not use Requester IDs). In most cases, such behavior by a system
management device requires the cooperation of the source bridge, since the source bridge
normally controls the assertion of RST#, drives the PCI-X initialization pattern, and sets
the Bus Master bit in all other devices.

Revision 1.0b

148

Revision 1.0b

149

7. Configuration Space for Type 00h Header Devices

This section contains the Configuration Space requirements for all PCI-X devices that use
a Type 00h header. Refer to Section 8.6 for the requirements for PCI-X bridges
(Type 01h header).

7.1. PCI-X Effects on Conventional Configuration Space Header

PCI-X devices include the standard Configuration Space header defined in PCI 2.2. In
conventional PCI mode, all of these registers function exactly as specified there. If the
device is initialized to PCI-X mode (see Section 6.2), the requirements for these registers
change as follows:

1. Command Register—
Fast Back-to-Back Enable: Ignored by the device in PCI-X mode.

Stepping Control: Ignored by the device in PCI-X mode.

Memory Write and Invalidate Enable: Ignored by the device in PCI-X mode.

Bus Master: Ignored by the device when initiating Split Completions.

2. Status Register—
Capabilities List: PCI-X devices include the PCI-X Capabilities List item, so this bit
is set to 1 for all PCI-X devices (both in PCI-X mode and conventional mode).

Fast Back-to-Back Capable: This bit is allowed to have any value when the device is
in PCI-X mode. (PCI-X devices never use fast back-to-back timing, regardless of the
state of this bit.)

Detected Parity Error and Master Data Parity Error: These bits are set as described
in Section 5.4.1.

DEVSEL timing: Indicates the device's conventional-PCI-mode DEVSEL# timing
as defined in PCI 2.2 regardless of the actual operating mode of the device.

3. Base Address Registers—All Base Address registers that request memory resources
(except the Expansion ROM Base Address register) must support 64-bit addressing
using the method defined in PCI 2.2. The Prefetchable bit must be set unless the
range contains locations with read side effects or locations in which the device does
not tolerate write merging. (See Section 2.12.1 for more details.) The minimum
memory address range requested by a Base Address register is 128 bytes. To
conserve address space, it is recommended that devices request an address range no
larger than the smallest integral power of two that is larger than the range actually
used by the device.

4. Latency Timer Register—The default value of the Latency Timer register is 64 in
PCI-X mode. (See Section 4.4 for more details.)

5. Cacheline Size Register, MIN_GNT and MAX_LAT—The device optionally uses
these registers for internal optimizations beyond the scope of this specification. Such
implementation must comply with the register requirements specified in PCI 2.2.
System configuration software must initialize these registers as specified in PCI 2.2.

Revision 1.0b

150

Implementation Note: Setting the Prefetchable Bit in a PCI-X Memory
Base Address Register

Each PCI-X transaction includes the byte count (DWORD transactions imply a byte
count of four), so no “prefetching” of data occurs. However, the term is preserved to
differentiate two types of memory ranges in device Base Address registers and bridge
memory range registers.

The requirements for setting the Prefetchable bit in memory Base Address registers are
different in PCI-X than for conventional PCI. Only the requirements for no read side
effects and the allowance of write merging apply to PCI-X systems. Only bytes for
which byte enables are asserted are relevant in a PCI-X transaction (other than for parity
generation and checking), so there is no requirement that all bytes be returned when
reading from a prefetchable range in a PCI-X device.

The PCI-X definition requires that the Prefetchable bit be set in memory Base Address
registers because range registers in PCI and PCI-X bridges for prefetchable memory are
64-bit wide. This provides the flexibility for system configuration software to locate the
device above the first 4 GB boundary. Non-prefetchable ranges for devices behind a PCI
or PCI-X bridge must be located below the first 4 GB boundary.

Implementation Note: Conserving Address Space

Unlike conventional PCI devices, which were permitted to decode 4 KB address ranges
even if they did not need that much, PCI-X devices that implement Base Address
registers are encouraged to request the minimum address space they need to support their
programming interface. Available address space in some systems is congested. This is
particularly true of PCI hot-plug system in which the addresses available for adding new
devices must be partitioned among several slots. Available address space is further
fragmented when devices and empty slots appear on the secondary side of a PCI-X
bridge. Devices that don’t request more address space than they need are preferred in
such systems.

7.2. PCI-X Capabilities List Item

PCI-X devices include new status and control registers that are located in the Capabilities
List in Configuration Space of each function. System configuration software determines
whether a device supports PCI-X by the presence of this item in the Capabilities List.
This list item must appear in a PCI-X device’s Configuration Space regardless of whether
the device is operating in conventional PCI mode or PCI-X mode.

A multifunction device that implements PCI-X must implement these registers in the
Configuration Space of each function. (PCI-X bridge functions use the register format
shown in Section 8.6.2.)

If the device is installed on an add-in card, the connection of the PCIXCAP pin of the
add-in card must be consistent with the presence of this Capability List item in each
function of the first device on the card. That is, the connection of the PCIXCAP pin
must indicate the card is capable of operating in PCI-X mode if and only if the PCI-X
Capability List item is present in the functions of the device that connects to the PCI
connector of the add-in card (not behind a bridge). See Section 8.6.2 for PCI-X
Capability List item for PCI-X bridge functions. See Section 9.10 for the connection of
the PCIXCAP pin.

Revision 1.0b

151

Unless otherwise noted, all PCI-X devices treat Configuration Space write operations to
reserved registers or bits as no-ops; that is, the access completes normally on the bus and
the data discarded. Read accesses to reserved or unimplemented registers or bits
complete normally and a data value of 0 is returned.

As in conventional PCI, software must take care to deal correctly with bit-encoded fields
that have some bits reserved for future use. On reads, software must use appropriate
masks to extract the defined bits and may not rely on reserved bits being any particular
value. On writes, software must ensure that the values of reserved bit positions are
preserved; that is, the values of reserved bit positions must first be read, merged with the
new values for other bit positions, and the data then written back.

Figure 7-1 shows the PCI-X Capabilities List item for a device with a Type 00h
Configuration Space header. The corresponding item for a device with a Type 01h
Configuration Space header (a PCI-X bridge) is shown in Section 8.6.2.

31 24 23 16 15 8 7 0
PCI-X Command Next Capability PCI-X Capability ID

PCI-X Status

Figure 7-1: PCI-X Capabilities List Item for a Type 00h Configuration Header

7.2.1. PCI-X ID

This register identifies this item in the Capabilities List as a PCI-X register set. It is read-
only returning 07h when read. (Note that PCI-X bridges use the same PCI-X ID in the
Capabilities List but use a different register format specified in Section 8.6.2.)

7.2.2. Next Capabilities Pointer

This register points to the next item in the Capabilities List, as required by PCI 2.2.

7.2.3. PCI-X Command Register

This register controls various modes and features of the PCI-X device. Bit Location 0 is
the least significant bit in the register.

Table 7-1: PCI-X Command Register

Bit
Location

Description

0 Data Parity Error Recovery Enable. (read/write)
The device driver sets this bit to enable the device to attempt to recover
from data parity errors as described in Section 5.4.1.1. If this bit is 0 and
the device is in PCI-X mode, the device asserts SERR# (if enabled)
whenever the Master Data Parity Error bit (Status register, bit 8) is set.

State after RST# is 0.
1 Enable Relaxed Ordering. (read/write)

If this bit is set, the device is permitted to set the Relaxed Ordering bit in the
Requester Attributes of transactions it initiates that do not require strong
write ordering (see Section 2.5 and Section 11).

State after RST# is 1. It is permitted to be read-only and set to 0 in devices
that never set the Relaxed Ordering attribute bit.

Revision 1.0b

152

Bit
Location

Description

3-2 Maximum Memory Read Byte Count. (read/write)
This register sets the maximum byte count the device uses when initiating a
Sequence with one of the burst memory read commands. It enables system
configuration software to tune system performance. Device drivers must not
modify this register without an understanding of the impact on the rest of the
system. See Section 13.1 for setting recommendations.

System configuration software is permitted to write to this register at any
time. The most recent value of the register is used each time the device
prepares a new Sequence. (In some cases, if the device has already
prepared some Sequences with the previous setting but not yet initiated
them, Sequences with the old setting are initiated after the new value is set.)

Register Maximum Byte Count
0 512
1 1024
2 2048
3 4096

State after RST# is 0.
6-4 Maximum Outstanding Split Transactions. (read/write)

This register sets the maximum number of Split Transactions the device is
permitted to have outstanding at one time. It enables system configuration
software to tune system performance. Device drivers must not modify this
register without an understanding of the impact on the rest of the system.
Host bridges are permitted to implement this register as read-only.

System configuration software is permitted to write to this register at any
time. The most recent value of the register is used each time the device
prepares a new Sequence. (In some cases, if the device has already
prepared some Sequences with the previous setting but not yet initiated
them, Sequences with the old setting are initiated after the new value is set.)

Register Maximum Outstanding
0 1
1 2
2 3
3 4
4 8
5 12
6 16
7 32

If RST# is asserted, the device initializes this register to indicate the
maximum number of Split Transactions the device is designed to have
outstanding when the Maximum Memory Read Byte Count register is set to
0 (512 bytes).

15-7 Reserved.

Revision 1.0b

153

7.2.4. PCI-X Status Register

This register identifies the capabilities and current operating mode of the device as listed
in the following table.

Table 7-2: PCI-X Status Register

Bit
Location

Description

2-0 Function Number. (read-only)
This register is read for diagnostic purposes only. It indicates the number of
this function; i.e., the number in the Function Number field (AD[10::08]) of
the address of a Type 0 configuration transaction to which this function
responds. The function uses this number as part of its Requester ID and
Completer ID.

7-3 Device Number. (read-only)
This register is read for diagnostic purposes only. It indicates the number of
the device containing this function, i.e., the number in the Device Number
field (AD[15::11]) of the address of a Type 0 configuration transaction that
is assigned to the device containing this function by the connection of the
system hardware. Device number 00h is reserved for the source bridge.
Therefore, the system must assign a device number other than 00h to all
other devices. The function uses this number as part of its Requester ID
and Completer ID.

Each time the function is addressed by a Configuration Write transaction,
the device must update this register with the contents of AD[15::11] of the
address phase of the Configuration Write, regardless of which register in the
function is addressed by the transaction. The function is addressed by a
Configuration Write transaction if all of the following are true:
1. The transaction uses a Configuration Write command.
2. IDSEL is asserted during the address phase.
3. AD[1::0] are 00b (Type 0 configuration transaction).
4. AD[10::08] of the configuration address contain the appropriate function

number.

State after RST# is 1Fh.
15-8 Bus Number. (read-only)

This register is read for diagnostic purposes only. It indicates the number of
the bus segment for the device containing this function. The function uses
this number as part of its Requester ID and Completer ID.

For all devices other than the source bridge, each time the function is
addressed by a Configuration Write transaction, the function must update
this register with the contents of AD[7::0] of the attribute phase of the
Configuration Write, regardless of which register in the function is
addressed by the transaction. The function is addressed by a Configuration
Write transaction when all of the following are true:
1. The transaction uses a Configuration Write command.
2. IDSEL is asserted during the address phase.
3. AD[1::0] are 00b (Type 0 configuration transaction).
4. AD[10::08] of the configuration address contain the appropriate function

number.

State after RST# is FFh

Revision 1.0b

154

Bit
Location

Description

16 64-bit Device. (read-only)
This bit is used by system management software to assist the user in
identifying the best slot for an add-in card. If the function is part of a device
that is installed on an add-in card and connects directly to the PCI connector
(not through a bridge), this bit is set if and only if all of the following are true:

1. The function implements a 64-bit AD interface.
2. The device implements a 64-bit AD interface.
3. The add-in card implements a 64-bit PCI connector. This requirement is

independent of the width of the slot in which the card is installed.

If the device is subordinate to a bridge on an add-in card, or if the device is
installed on the system board (not in a slot), this bit is permitted to have any
value.

0 = The bus is 32 bits wide.
1 = The bus is 64 bits wide.

17 133 MHz Capable. (read-only)
This bit is used by system management software to assist the user in
identifying the best slot for an add-in card. It is also used in some hot-plug
systems to determine whether an add-in card would function properly if the
bus were changed to PCI-X 133 mode.

If the device is installed on an add-in card and connects directly to the PCI
connector (not through a bridge), this bit indicates whether the device is
capable of 133 MHz operation in PCI-X mode. The connection of the card’s
PCIXCAP pin (see Section 6.2) must be consistent with this bit.

If the device is subordinate to a bridge on an add-in card, or if the device is
installed on the system board (not in a slot), this bit is permitted to have any
value.

All functions within a multi-function device have the same value for this bit.
0 = The device’s maximum operating frequency is 66 MHz.
1 = The device’s maximum operating frequency is 133 MHz.

18 Split Completion Discarded. (write 1 to clear)
This bit is set if the device discards a Split Completion because the
requester would not accept it, except as noted in Section 5.4.4. Once set,
this bit remains set until software writes a 1 to this location. State after
RST# is 0.

0 = no Split Completion has been discarded.
1 = a Split Completion has been discarded.

19 Unexpected Split Completion. (write 1 to clear)
This bit is set if an unexpected Split Completion with this device’s Requester
ID is received. See Section 5.4.5 for more details. Once set, this bit
remains set until software writes a 1 to this location. State after RST# is 0.

0 = no unexpected Split Completion has been received.
1 = an unexpected Split Completion has been received.

Revision 1.0b

155

Bit
Location

Description

20 Device Complexity. (read-only)
This bit indicates whether this device is a simple device or a bridge device,
as defined in Section 2.13. Simple devices are subject to the posting and
required acceptance rules shown in Section 2.13. If a device does not meet
the definition of a simple device, it is a bridge device and must follow the
rules in Section 8.2.

0 = simple device
1 = bridge device

22-21 Designed Maximum Memory Read Byte Count. (read-only)
This register indicates a number that is greater than or equal to the
maximum byte count the device-function is designed to use when initiating a
Sequence with one of the burst memory read commands. The device-
function must report the smallest value that correctly indicates its capability.
If system configuration software sets the Maximum Memory Read Byte
Count register (in the PCI-X Command register) to a value different from this
register, the device uses the smaller value.

Register Maximum Byte Count
0 512
1 1024
2 2048
3 4096

25-23 Designed Maximum Outstanding Split Transactions. (read-only)
This register indicates a number that is greater than or equal to the
maximum number of Split Transactions the device-function is designed to
have outstanding at one time. The device-function must report the smallest
value that correctly indicates its capability. If the number depends on the
value in the Maximum Memory Read Byte Count register (in the PCI-X
Command register), this register must be accurate for the present setting of
the Maximum Memory Read Byte Count register. If system configuration
software sets the Maximum Outstanding Split Transaction register (in the
PCI-X Command register) to a value different from this register, the device
uses the smaller value.

Register Maximum Outstanding
0 1
1 2
2 3
3 4
4 8
5 12
6 16
7 32

Revision 1.0b

156

Bit
Location

Description

28-26 Designed Maximum Cumulative Read Size. (read-only)
This register indicates a number that is greater than or equal to the
maximum cumulative size of all burst memory read transactions the device-
function is designed to have outstanding at one time. The device-function
must report the smallest value that correctly indicates its capability. If the
number depends on the value in the Maximum Memory Read Byte Count
register (in the PCI-X Command register), this register must be accurate for
the present setting of the Maximum Memory Read Byte Count register.

Register Maximum Outstanding
ADQs bytes (ref)

0 8 1 KB
1 16 2 KB
2 32 4 KB
3 64 8 KB
4 128 16 KB
5 256 32 KB
6 512 64 KB
7 1024 128 KB

29 Received Split Completion Error Message. (write 1 to clear)
This bit is set if the device receives a Split Completion Message with the
Split Completion Error attribute bit set. See Section 5.4.6 for details. Once
set, this bit remains set until software writes a 1 to this location. State after
RST# is 0.

0 = no Split Completion error message received.
1 = a Split Completion error message has been received.

31-30 Reserved

Implementation Note: Updating the Bus Number and Device Number

The Bus Number and Device Number registers are updated on every Configuration Write
transaction that addresses the function. It is important that each function update these
registers each time they are addressed by a Configuration Write (not just the first one
after power-up). In some systems, system-configuration software changes PCI bus
segments one or more times after power-up. For example, if an add-in card containing a
bridge was hot-added to a system, the system-configuration software might renumber
other buses to make room for the new one.

The device number is assigned by the connection of the system hardware and, therefore,
should not change after RST# deasserts. However, for consistency with the Bus Number
register, the Device Number register is also required to be updated on every
Configuration Write transaction that addresses the device. Future versions of this
specification may depend upon this behavior.

Revision 1.0b

157

Implementation Note: Using the 64-bit Device and 133 MHz Capable
Status Bits.

The 64-bit Device and 133 MHz Capable bits in the PCI-X Status register (and the PCI-X
Bridge Status register) are intended for use by system management software to assist the
user in identifying the best slot for an add-in card. For system management software to
make recommendations, it must know not only the characteristics of the add-in cards but
also the characteristics of the slots. The method by which software determines the
characteristics of the slots is beyond the scope of this specification.

The states of these bits are not useful for devices other than the first device of an add-in
card. The user cannot affect the connection of devices behind a bridge on an add-in card,
or devices permanently installed on the system board (not in a slot). In these cases the
bits are permitted to have any value. System management software is recommended not
to report the states of the bits in these cases.

Some implementations of multi-function devices may contain both 64-bit and 32-bit
functions within the same device. System management software should recommend that
the user place an add-in card in a 64-bit slot, if the 64-bit Device bit is set for any
function of a multi-function device that is the first device on the card.

A device designed for use both on 64-bit and 32-bit add-in cards must implement a
method for the card designer to set the 64-bit Device bit only in 64-bit add-in card
applications. The method for setting this bit is not specified, but commonly used
techniques include pull-up or pull-down resistors on pins that are outputs after the rising
edge of RST#, or serial EEPROMs that are down-loaded when the device powers up.

The frequency indicated by the connection of the PCIXCAP pin must be consistent with
the 133 MHz Capable bit of the first device on the card.

7.3. Use of I/O Space

I/O Space is limited, especially in hot-plug systems, and I/O references are generally
slower than memory references. PCI-X devices are discouraged from using I/O Space. If
I/O Space is required, the device must also provide access to the same registers in
Memory Space. In other words, if the device uses a Base Address register (BAR) to
request I/O Space, it must also use another BAR to request Memory Space for the same
resource. If sufficient I/O Space is not available, system configuration software only
assigns Memory Space resources. (PCI 2.2 recommends this mapping of the device into
both address spaces.)

Revision 1.0b

158

Revision 1.0b

159

8. PCI-X Bridge Additional Design Requirements

A PCI-X bridge is a device capable of connecting two buses operating in PCI-X mode.
Since any bus capable of operating in PCI-X mode must operate in conventional PCI
mode when a conventional device is installed on that bus, a PCI-X bridge must operate
with either or both of its interfaces in conventional mode. When opera ting in
conventional mode, the bridge’s behavior is governed by Bridge 1.1.

Unless otherwise specified in this section, a PCI-X bridge must meet all the requirements
specified throughout this document for PCI-X devices both on its primary and secondary
interfaces. As in conventional PCI, a PCI-X bridge creates a new bus segment in the PCI
configuration hierarchy. The PCI-X bridge is the source bridge for this segment and
must meet all the requirements specified throughout this document for a source bridge for
this segment. For example, the PCI-X bridge must drive the PCI-X initialization pattern
on the secondary bus before deasserting secondary RST# to place secondary bus devices
in the proper mode (conventional or PCI-X) and to indicate the secondary bus clock
frequency (in PCI-X mode).

This section includes additional requirements that are unique to bridges. Not all bridge
requirements are shown in this section. Some bridge requirements that are similar to or
related to requirements for all devices are shown elsewhere. For example:

• Requester Attributes Section 2.5
• Configuration Transactions Section 2.7.2.2
• Split Transactions Section 2.10
• Split Completion Error Message

Reporting
Section 5.4.6

8.1. Summary of Key Requirements

The following list is a summary of some of the key requirements of a PCI-X bridge:

• Each interface must operate in conventional PCI mode if a conventional PCI device
is installed there (PCIXCAP connected to ground). The source bridge for the
primary bus informs the PCI-X bridge of the mode of the primary bus with the PCI-X
initialization pattern at the rising edge of primary RST#. The PCI-X bridge must
sense the state of secondary PCIXCAP (see Section 14) and initialize the secondary
bus devices properly (see Section 8.9).

• Like all PCI-X devices, PCI-X bridges must support 64-bit addressing on both
interfaces. They are permitted to implement either a 64-bit or 32-bit AD bus on
either interface.

• PCI-X bridges must complete all DWORD transactions and all burst memory read
transactions as Split Transactions, if the transaction crosses the bridge (i.e., the
requester is on one interface and the completer is on the other) and the originating
interface is in PCI-X mode. Transactions that address locations internal to the bridge
have the same requirements described throughout this document for other PCI-X
devices.

• As in conventional PCI, PCI-X bridges use a Type 01h Configuration Space header.
The PCI-X registers in the Capabilities List item are different for Type 01h devices
than for other devices (see Section 8.6).

Revision 1.0b

160

• System topologies, Special Cycle, and Interrupt Acknowledge cases listed as
unsupported in Bridge 1.1 are not supported by PCI-X bridges.

• As in conventional PCI, support for 66 MHz conventional PCI timing is optional for
both interfaces.

8.2. PCI-X Bridges and Application Bridges

All of the requirements of this section apply to PCI-X devices that identify themselves as
PCI-X bridges by using a Type 01h Configuration Space header and Base Class 06h and
Sub-Class 04h.

In some cases, a device that uses a Type 00h Configuration Space header and a different
Base Class or Sub-Class code exhibits some of the characteristics of a bridge. As
described in PCI 2.2, a device that implements internal posting of memory write
transactions that the device must initiate on the PCI-X interface is considered a bridge.
(In most cases, such bridges connect a local intelligent subsystem to the PCI-X interface.)
Because such devices use a Base Class and Sub-Class that reflects the function they
perform, this document refers to them as application bridges. Host bridges and bridges to
other buses that use a Type 00h Configuration Space header are application bridges.
Application bridges identify themselves as bridges by setting the Device Complexity bit
in the PCI-X Status register (see Section 7.2.4).

Except as noted below, application bridge must meet all the requirements of simple
devices described throughout this document. Additionally, application bridges must meet
at least the following bridge requirements. Additional PCI-X bridge requirements may
be necessary, depending upon the complexity of the application bridge:

1. Transaction ordering and deadlock avoidance rules presented in Section 8.4.4

2. Required acceptance rules presented in Section 8.4.5

3. Exclusive access rules presented in Section 8.5 unless the system guarantees that no
exclusive access ever addresses a completer on the other side of the bridge

PCI-X bridges and application bridges are exempt from the following PCI-X simple-
device requirements for transactions that cross from one interface to another:

1. Maximum Completion Time limit presented in Section 2.13. Bridges must forward
transactions as quickly as the ordering rules permit. If internal buffers for memory
writes or for Split Requests are full, the bridge terminates subsequent transactions
with Retry.

2. Retry and disconnection of Split Completions. Bridges terminate Split Completions
with Retry or Disconnect at Next ADB if required by the transaction ordering rules or
if buffer space designed for Split Completions is full of previous Split Completions.

8.3. Address Decoding

PCI-X bridges decode Memory Space, I/O Space, and Configuration Space the same as
conventional PCI bridges. All memory and I/O range registers are programmed and
interpreted the same way. Configuration transactions are forwarded based on bus number
the same as conventional PCI.

Split Completions are forwarded based on the Requester Bus Number field in the Split
Completion address (similar to configuration transactions) as described in Section 2.10.3.

Revision 1.0b

161

8.4. Bridge Operation

As in conventional PCI, PCI-X bridges are required to post memory write transactions
that cross the bridge in either direction if space is available in the bridge. PCI-X bridges
are required to terminate memory read transactions, I/O transactions, and configuration
transactions with Split Response if the transactions cross the bridge, space for the request
is available in the bridge, and the bridge’s requester-side interface is in PCI-X mode.
(See Section 8.7.1.2 for an exception for data parity errors on non-posted write
transactions.) If bridge buffers used for these transactions are full, and the transaction
addresses a completer on the other side of the bridge, the bridge is allowed to terminate
the transaction with Retry.

See Section 8.4.2.1 for management of Split Completion buffers.

Buffer requirements specified throughout this section for transactions flowing upstream
are independent of transactions flowing downstream, and vice versa.

8.4.1. Buffer Size Requirements

PCI-X bridges must provide at least two ADQs of buffer space for memory write data
(except as allowed in Section 8.4.6). A bridge’s memory write buffer area is considered
full when less than two ADQs of buffer space are available (except as allowed in
Section 8.4.6). Bridges are encouraged to implement much larger buffers to enable the
posting of multiple and/or longer burst memory write transactions.

PCI-X bridges must provide at least two ADQs of buffer space for Split Completion data,
with one exception described below. Except in this one case, a bridge’s Split Completion
buffer area is considered full when less than two ADQs of buffer space are available.
Bridges are encouraged to implement much larger buffers to enable the storing of
multiple and/or longer Split Completions.

In the exception case, a PCI-X bridge is permitted to accept a Split Completion
transaction with less than two ADQs of buffer space available if that bridge provides
alternate means for guaranteeing that it never holds a Split Completion transaction that is
too short to forward correctly, as described below.

A bridge with less than two ADQs of buffer space for Split Completions is not permitted
to signal Disconnect at Next ADB on the first data phase of a Split Completion if both of
the following are true:

• The Split Completion would otherwise cross the ADB.

• The Split Completion begins less than four data phases from the ADB.

Revision 1.0b

162

Implementation Note: Buffer Space for Split Completion Data

A bridge holds a portion of the Split Completion that is too small to forward correctly on
the destination bus if all of the following are true:

• The Split Completion begins less than four data phases from an ADB.

• The byte count is such that the Split Completion would cross the ADB.

• A bridge forwarding the Split Completion has space available for only one ADQ and
signals Disconnect at Next ADB on the first data phase of the Split Completion.

In such a case the bridge would hold less than four data phases of the Split Completion,
but the byte count would indicate that the transaction extended beyond the ADB. If the
bridge were to attempt to forward such a partial Split Completion to the completer, it
would be unable to disconnect the transaction at the ADB, but would not have the data to
proceed beyond the ADB. (See Section 8.4.6 for a similar situation for memory write
transactions.)

The bridge avoids this problem if it has a minimum of two ADQs of buffer space
available for storing Split Completions. If a Split Completion arrives when the bridge
has only one ADQ of buffer space available, the bridge signals Retry. (See Section 8.4.5
for additional restrictions on the use of Retry.)

PCI-X bridges must have available a minimum buffer space of two ADQs for holding
immediate read data before initiating a read request.

Implementation Note: Buffer Space for Immediate Read Data

If a bridge forwards a long burst read transaction and the target responds immediately
with data, the bridge must accept the data at least to the first ADB. If the starting address
of the transaction is less than four data phases from an ADB, the bridge is not able to
disconnect on that ADB and must proceed to the next. In this case, the bridge must have
two ADQ buffers, one for the data between the starting address and the first ADB and the
other for the data between the first and second ADBs.

If the Split Transaction Commitment Limit field in the bridge’s Split Transaction Control
register is set no larger than the Split Transaction Capacity field, the bridge always has
buffer space available for the entire Sequence. In this case, no additional action is
required to guarantee that two ADQ buffers are available before initiating the transaction.

Revision 1.0b

163

8.4.2. Forwarding Split Transactions

A PCI-X bridge must terminate with Split Response all transactions that address a
completer on the other side of the bridge and use one of the following commands.
(Bridges are also allowed to terminate with Retry any transaction that crosses the bridge
if bridge buffers for those transactions are filled with previous transactions crossing the
bridge in the same direction.)

• Memory Read DWORD

• Memory Read Block

• Alias to Memory Read Block

• I/O Read

• I/O Write

• Configuration Read

• Configuration Write

In most cases, a PCI-X bridge forwards a Split Request from one bus to another and
forwards the Split Completion in the opposite direction without modifying the
transactions or keeping track of what transactions are outstanding (other than to reserve
an amount of buffer space for the Split Completion as described in Section 8.4.2.1). The
following exceptions to this rule are specified elsewhere:

• Configuration Transactions Section 2.7.2.2
• Completer executes the transaction as an Immediate

Transaction
Section 8.4.2.2

• One or more of the bridge interfaces is in conventional
mode

Section 8.4.3

Revision 1.0b

164

Implementation Note: Decomposing Split Transactions

A bridge is not obligated to forward any Split Transaction to the destination bus in the
same size that it received it on the originating bus. However, since a bridge with a
Type 01h Configuration Space header does not include a PCI-X Command register,
decomposing one request into multiple requests reduces the ability of the system to
manage Split Transaction resources through the use of the Maximum Outstanding Split
Transactions register. Furthermore, decomposing one large request into multiple smaller
ones generally increases complexity of the bridge and often leads to lower efficiency on
the destination bus. Therefore, this behavior is discouraged. The following discussion
illustrates some of the additional complexity that such behavior would introduce.

If a bridge decomposes a request it terminated with Split Response on the originating bus,
it must generate unique Sequence IDs for each of the decomposed requests. This
generally requires the bridge to use its own Requester ID for the destination bus because
that is the only way the bridge guarantees that the Sequence ID is unique. When the
bridge initiates such a Sequence on its primary interface, the bus number would be the
number in the Primary Bus Number register (which is the same as the number in the Bus
Number field in the PCI-X Bridge Status register). The device number would be the
number in the Device Number field in the PCI-X Bridge Status register. When the bridge
initiates such a Sequence on its secondary interface, the bus number would be the number
in the Secondary Bus Number register. The device number would be 00h, since this
device number is reserved for the source bridge of any bus. When the Split Completions
return on the destination bus, the bridge must convert back to the original Sequence ID
and must return the data in address order.

PCI-X bridges are generally not permitted to combine separate read Sequences into a
single Sequence. Combining of read Sequences generally requires knowledge of the
completer to avoid crossing a device boundary. Such knowledge is beyond the scope of
the PCI-X definition.

A PCI-X bridge forwards a Split Request solely according to its starting address. If the
starting address of a read transaction addresses a device on the other side of a PCI-X
bridge, but one or more addresses between the starting address and ending address do not,
the bridge forwards the Split Request unmodified.

Revision 1.0b

165

Implementation Note: Burst Read Sequences that Cross Bridge
Boundaries

Since normally functioning requesters understand the address range of the completer, and
since combining of separate read Sequences by bridges is generally not allowed, read
Sequences cross a bridge boundary only under abnormal conditions. However, if such a
transaction crosses a bridge, the bridge simply forwards it based on the transaction’s
starting address.

If a bridge forwards such a transaction, the bridge must be prepared for the Sequence to
complete on the destination bus in any of the following ways:

• The completer signals Split Response, initiates Split Completion transactions with
data up to its device boundary, and then initiates a Split Completion Message
indicating the byte count is out of range. (See Section 2.10.6.)

• The completer completes the transaction as an Immediate Transaction up to its device
boundary and then disconnects the transaction. When the bridge attempts to continue
the Sequence, it ends with Master-Abort.

• The completer signals Target-Abort.

A PCI-X bridge is permitted to combine Split Completions that are part of the same
Sequence, provided that such combining does not violate the bridge ordering rules. (See
Section 8.4.4.)

8.4.2.1. Split Completion Buffer Allocation

PCI-X bridges contain two registers that limit the forwarding of Split Requests (see
Sections 8.6.2.5 and 8.6.2.6). The Split Transaction Capacity register indicates the
amount of buffer space the bridge has for storing Split Completions. If the bridge stores
Split Completions for burst memory read requests in a separate area from other Split
Completions, this register indicates the size (in units of ADQs) of the area for storing
Split Completions for burst memory reads. If the bridge stores Split Completions for
burst memory reads in the same area as some or all other Split Completions, this register
indicates the size of this area in units of ADQs.

The Split Transaction Commitment Limit registers indicate the cumulative Sequence size
of the appropriate Split Transactions (see Sections 8.6.2.5 and 8.6.2.6) the bridge is
allowed to have outstanding at one time (in units of ADQs). If the bridge enqueues a
request to be forwarded and the size of that request plus all those the bridge presently has
outstanding in that direction exceeds the contents of the Split Transaction Commitment
register, the bridge is not permitted to assert REQ# for this request. After sufficient Split
Completion transactions have been forwarded to their respective requesters such that the
size of the request plus the total outstanding commitment is less than the commitment
limit, the bridge is permitted to assert REQ# to forward the transaction.

If the bridge stores Split Completions for burst memory read requests in a separate area
from other Split Completions, the Split Transaction Commitment Limit register applies
only to burst memory reads. Such a bridge must never forward other Split Requests (e.g.,
I/O Read, I/O write, etc.) unless it has a place to store the corresponding Split
Completions. If the bridge stores Split Completions for burst memory reads in the same
area as some or all other Split Completions, this register applies to all Split Transactions
stored with burst memory read transactions.

At power-up, the Split Transaction Commitment Limit register defaults to the same value
as the Split Transaction Capacity register. At this setting, the bridge is allowed to

Revision 1.0b

166

forward Split Transactions whose cumulative size exactly fills the bridge buffers. If the
Split Transaction Commitment Limit register is programmed to a value greater than the
value of the Split Transaction Capacity register, the bridge is allowed to forward Split
Transactions up to the Split Transaction Commitment Limit even though not all of the
Split Completions for these transactions would fit in the bridge at one time. See
Section 13.2 for recommendations for optimizing the setting of the Split Transaction
Commitment Limit registers.

Unexpected Split Completion exceptions (see Section 5.4.5) that cross the bridge prevent
the bridge from accurately tracking its Split Transaction commitment.

A setting of FFFFh in the Split Transaction Commitment Limit register allows the bridge
to forward all Split Transactions (in the appropriate direction) without regard to the
Sequence size or the amount of buffer space available in the bridge. The bridge is not
required to track the size of outstanding commitments if the register is set to FFFFh.
However, if the register is changed from FFFFh to a smaller value and all outstanding
Split Transactions that cross the bridge complete, the bridge must begin to accurately
track new outstanding commitments.

Implementation Note: Accurate Tracking of Outstanding
Commitments after a Setting of FFFFh

The bridge is not required to track outstanding Split Transaction commitment if the Split
Transaction Commitment Limit is set to FFFFh. If the register is later set to something
smaller, the bridge has no way of knowing the size of the Split Transactions that are
outstanding. If the bridge does not implement a method for synchronizing its
commitment counters to the actual size of outstanding commitments, the bridge would
regulate its outstanding commitments to the wrong limit indefinitely.

To synchronize the bridge’s commitment counters, the bridge must set its commitment
count to zero and immediately begin incrementing it when new Split Requests are
forwarded across the bridge and decrementing it when Split Completions are forwarded
to their requesters across the bridge. However, if a Split Completion would decrement
the commitment count below zero, the commitment count must be set to zero. If at some
point all outstanding Split Transactions finish, the bridge’s commitment count is also
zero. From that point on, the commitment limit is accurate.

If a Split Request must be forwarded by a bridge and the Sequence size of that one
Sequence exceeds the Split Transaction Capacity of the bridge (for the appropriate
direction), the bridge must wait to forward that Split Request until the bridge has no other
Split Transactions outstanding in that direction. If the bridge allows other Split Requests
to pass the large Split Request (see Section 8.4.4), the bridge must forward the large
request eventually.

Revision 1.0b

167

Implementation Note: Split Transaction Buffer Allocation Algorithm
The following is an example implementation that would meet the requirements defined above
for PCI-X bridges. If the Split Transaction Commitment Limit register is set to FFFFh, the
bridge forwards all requests regardless of size and does not track the number of outstanding
Split Transactions. If the register is set to some other value, the bridge implements the
following expression independently for Split Transactions crossing in either direction:

TOST + NST ≤ STCL

Where:
TOST =Total outstanding Split Transactions in ADQs.
NST = Size of next Split Transaction in number of ADQs. Note that this is a

function of the starting and ending addresses not just the byte count.
If a transaction begins or ends between two ADBs, NST includes the
whole ADQ.

STCL = Contents of the Split Transaction Commitment Limit register.

To implement the expression, the bridge would provide the Upstream and Downstream Split
Transaction Control registers (see Sections 8.6.2.5 and 8.6.2.6) and the following capabilities
(independently for transactions flowing upstream and downstream):

• TOST is a 16-bit counter that indicates the number of Split Transactions (in number of
ADQs) that are outstanding from the bridge (in one direction). That is the number of
ADQ-size buffers necessary to hold all the Split Completions for all Split Requests
forwarded to the completer by the bridge but not yet returned to the requester by the
bridge. The default value of TOST after power-up is 0.

• Whenever the bridge forwards a Split Request of size NST, the bridge increments TOST
by the size NST.

• Before the bridge can forward the next pending Split Request, it must check whether the
request is allowed to issue based on the expression above. If the value of TOST + NST is
greater than STCL, the bridge must wait until enough Split Completions drain out of the
bridge to satisfy the expression before forwarding the next Split Request. If TOST is 0,
the bridge must forward the transaction regardless of its size. This guarantees that a
Sequence of a size larger than the bridge’s Split Transaction capacity is forwarded when
the bridge is empty.

• When the bridge initiates a Split Completion transaction, it decrements TOST by 1 each
time the Split Completion crosses an ADB (making one ADQ-size buffer available for
another Split Completion). If the Sequence ends with a Split Completion Message, the
bridge decrements TOST according to the starting address and byte count of the rest of
the Sequence (included in the Split Completion Message). TOST must not decrement
below zero. (Synchronizes to the actual commitment level if STCL used to be set to
FFFFh. See implementation note above.)

If the bridge mixes I/O and configuration read and write completions in the same buffer area
with memory read completions, the algorithm applies to all Split Transactions forwarded by
the bridge. If the bridge segregates memory read transactions from the rest, the algorithm
applies only to memory read transactions. Note that in such a bridge, the Split Transaction
Control registers apply only to memory reads.

For good performance and scalability, it is assumed that the maximum programmable size
read request that a device is programmed to be allowed to issue is set to a value significantly
smaller (e.g., 1/4) than the total read completion capacity of any PCI-X bridge above the
adapter.

Revision 1.0b

168

8.4.2.2. Immediate Completion by the Completer

A PCI-X bridge forwarding a Split Request must be prepared for the completer to
complete the transaction immediately (i.e., execute the transaction as an Immediate
Transaction rather than a Split Transaction) or for the transaction to end with Master-
Abort.

If the completer completes the transaction immediately, the bridge must create a Split
Completion transaction to return to the requester. (Note that this differs from the case in
which the completer responds with Split Response. In that case, the completer creates the
Split Completion and the bridge simply forwards it.) When the bridge creates the Split
Completion, the bridge creates the Split Completion address and Completer Attributes. It
creates the Split Completion address from the original request the same way a completer
would (see Section 2.10.3). For the Completer Attributes, the bridge creates the
Completer ID for the bus on which the immediate completion occurred. If the immediate
completion occurred on the primary bus, the bridge supplies the bus number, device
number, and function number from its PCI-X Bridge Status register. If the immediate
completion occurred on the secondary bus, the bridge supplies the bus number from the
Secondary Bus Number register and sets the Device Number and Function Number fields
to zero.

Implementation Note: Mixing Immediate and Split Completion

If a PCI-X bridge forwards a burst memory read Sequence and the completer completes a
portion of the Sequence immediately, the bridge must create a Split Completion for this
portion of the Sequence as described above. If the completer signals Split Response
when the bridge continues the Sequence on the destination bus, the completer creates the
Split Completion for the remainder of the Sequence.

In this case, the Split Completion for the first portion of the Sequence uses a Completer
ID created by the bridge (as described above). Furthermore, the bridge would be
permitted to set the Byte Count Modified bit in the Completer Attributes and modify the
byte count of this Split Completion to disconnect it at the first ADB of the Sequence.
The Split Completion for the remainder of the Sequence uses the Completer ID of the
completer. Since the continuation of the Sequence starts on an ADB following a range
that the completer completed as an Immediate Transaction, the completer is not permitted
to set the Byte Count Modified bit or use a byte count other than the full remaining byte
count of the Sequence. (See Section 2.10.2.) The bridge transaction ordering rules
require the bridge to return the two portions of the Sequence to the requester in address
order (see Section 8.4.4).

Revision 1.0b

169

Implementation Note: Buffering Data from Single Data Phase
Disconnection

If a PCI-X bridge forwards a burst read request and the completer on the destination bus
signals Single Data Phase Disconnect, the bridge must continue the Sequence on the
destination bus and accumulate data phases at least up to the next ADB (or until the byte
count is satisfied or an error occurs) before it can create the Split Completion and forward
it to the requester. The process of accumulating data phases for the Split Completion
generally requires multiple transactions on the destination bus. If the bridge is designed
not to allow one Split Completion to pass another (i.e., Rows D and E, column 5 in
Table 8-3 are implemented as “No”), the performance of other efficient Split Completion
transactions is degraded by this slow Single Data Phase Disconnect process.

PCI-X bridges can generally avoid this performance problem by accumulating Single
Data Phase Disconnect data phases in a separate buffer, or by otherwise keeping them
from blocking other Split Completions in the general Split Completion buffer area until
enough data phases from the Single Data Phase Disconnect have accumulated to reach an
ADB.

If the Split Request is a write transaction and the completer completes it immediately, the
bridge also creates a Split Completion Message (see Section 2.10.6.1) for the data phase
of the Split Completion.

Transactions that end with Master-Abort or Target-Abort have similar requirements
described in Sections 8.7.1.5 and 8.7.1.6 respectively.

8.4.2.3. Split Request Capacity Recommendations

A PCI-X bridge is required to accept a minimum of one Split Request at a time in both
directions, but implementations are encouraged to accept more to improve performance.

Implementation Note: Optimum Size Split Request Buffer

The optimum size of the buffer a PCI-X bridge uses to store Split Requests before they
are forwarded is influenced by several factors. If the buffer is too small, in some cases,
the buffer empties (underruns) on the completer side before other requesters are able to
issue their next request. However, if the bridge keeps requests in strict order and the
buffer is large and fills with long requests, the latency for a new request (even a short
one) is increased by the long requests enqueued in front of it.

The optimum number of Split Requests that a PCI-X bridge should buffer when requests
are not being forwarded (because of lack of resources in the path toward the completer) is
the minimum necessary to avoid buffer underrun when requests start flowing again. In
most systems, the optimum buffer capacity is approximately four Split Requests.

8.4.3. Connecting PCI-X and Conventional PCI Interfaces

This section provides requirements for the translation of commands and protocol between
conventional and PCI-X interfaces. In all cases, an interface of a PCI-X bridge that is
operating in conventional mode must meet the requirements of PCI 2.2 and Bridge 1.1. If
both interfaces of a PCI-X bridge are operating in conventional mode, the bridge
requirements are completely specified by PCI 2.2 and Bridge 1.1. The following list
summarizes some of the requirements of translating between these two interfaces:

Revision 1.0b

170

• Conversion between PCI-X protocol and conventional PCI protocol.

• Translation between PCI-X commands and conventional PCI commands.

• Conversion of AD[1::0] as appropriate for the command.

• The byte count and other attributes must be created for transactions translated to
PCI-X.

• Conversion between Split Transactions and Delayed Transactions.

• PCI-X data parity error recovery capabilities are not available for devices on a bus in
conventional mode. Data parity errors on a conventional interface must be serviced
with conventional means.

8.4.3.1. Conventional Requester, PCI-X Completer

8.4.3.1.1. Conventional PCI to PCI-X Command Translation and Byte Count
Generation

Table 8-1 summarizes the command translation requirements from a conventional PCI
transaction to a PCI-X transaction.

Table 8-1: Conventional PCI to PCI-X Command Translation

Conventional PCI Command PCI-X Command
I/O Read I/O Read
I/O Write I/O Write
Configuration Read Configuration Read
Configuration Write Configuration Write
Memory Read Memory Read DWORD

or Memory Read Block
Memory Read Line Memory Read Block
Memory Read Multiple Memory Read Block
Memory Write Memory Write or

Memory Write Block
Memory Write and Invalidate Memory Write Block

Conventional I/O and configuration transactions that cross the bridge translate to the
same command on the PCI-X interface. PCI-X I/O transactions are limited to a single
DWORD, so the PCI-X bridge must disconnect the conventional requester after each data
phase.

The bridge must translate the conventional Memory Read command to either the Memory
Read DWORD or Memory Read Block PCI-X command. If the requester is 32 bits wide
and deasserts FRAME# when it asserts IRDY# (indicating the transaction has only a
single data phase), the most efficient PCI-X command to use is Memory Read DWORD.
The length of the conventional transaction is not known in any other case, so the PCI-X
bridge must implement the same prefetch algorithms used by conventional PCI bridges.
Such prefetch algorithms are beyond the scope of the PCI-X definition. If the PCI-X
bridge prefetches more than a single DWORD, it must use the Memory Read Block
command. If a Memory Read Block command is used, the byte count is controlled by the
bridge’s prefetch algorithm.

The bridge must translate the conventional Memory Read Line and Memory Read
Multiple commands to the PCI-X Memory Read Block command. The byte count for

Revision 1.0b

171

this command is controlled by the bridge’s prefetch algorithm which is beyond the scope
of the PCI-X definition.

The bridge must buffer memory write transactions from its conventional interface and
count the number of bytes to be forwarded to the PCI-X interface. If the conventional
transaction uses the Memory Write command and some byte enables are deasserted, the
bridge must use the PCI-X Memory Write command. If the conventional command is
Memory Write and all the byte enables are asserted, the bridge is permitted to use either
the Memory Write or the Memory Write Block PCI-X command. If the conventional
transaction uses the Memory Write and Invalidate command, the bridge must use the
PCI-X Memory Write Block command.

8.4.3.1.2. Delayed Transaction to Split Transaction Conversion

If the PCI-X bridge forwards a transaction other than a memory write from a
conventional requester to a PCI-X completer, the bridge must follow Delayed
Transaction rules on the requester side and Split Transaction rules on the completer side.

All of the Delayed Transaction requirements specified in Bridge 1.1 apply to the
transactions the PCI-X bridge forwards from its conventional interface. For example, the
bridge must terminate all these transactions with Retry, store the address, command, etc.,
and enqueue a Delayed Request. When the bridge has finished the request on the
destination bus, the bridge enqueues a Delayed Completion. The next time the requester
repeats the transaction, the bridge supplies the Delayed Completion.

All the Split Transaction rules of the PCI-X definition apply to the transactions the bridge
initiates on its PCI-X interface.

Transactions that originate on a conventional interface of a bridge follow the
conventional ordering and deadlock-avoidance rules shown in PCI 2.2 and Bridge 1.1.
All of the bypass cases required to avoid deadlock are the same for conventional PCI and
PCI-X, so the translation introduces no additional requirement to avoid deadlocks. The
Relaxed Order attribute is never set for transactions the bridge translates from
conventional PCI, so the special case for Split Transactions in PCI-X bridges that applies
only when this bit is set (Row D, Column 2b in Table 8-3) does not apply to these
transactions. All other ordering-rule requirements for transactions in the PCI-X
environment are the same as (or are more conservative than) the conventional PCI
requirements.

8.4.3.1.3. Conventional PCI to PCI-X Attribute Creation

If a PCI-X bridge forwards any transaction from a conventional requester to a PCI-X
completer, the bridge must create Requester Attribute bits for the PCI-X transaction.
Generation of the byte count is described in Section 8.4.3.1.1. The bridge uses the bus
number for its conventional interface (from either the Primary Bus Number register or the
Secondary Bus Number register) and sets the Device Number and Function Number
fields to 0. (When the Split Completion returns to the bridge, the bridge forwards it to
the conventional requester based on the bus number in the Split Completion address, the
same as it does for all other cases. The Device Number and Function Number fields in
the Split Completion address are ignored in this case.)

The bridge is permitted to assign Tag numbers to these transactions using any algorithm.
For example, if the bridge enqueues multiple Delayed Transactions on the conventional
interface, the Tag could be assigned according to the Delayed Transaction with which it
is associated.

Revision 1.0b

172

The bridge must never set the Relaxed Order or No Snoop attribute bits on transactions
forwarded from a conventional bus.

8.4.3.2. PCI-X Requester, Conventional Completer

8.4.3.2.1. PCI-X to Conventional PCI Command Translation

Table 8-2 summarizes the translation requirements from a PCI -X command to a
conventional PCI command.

Table 8-2: PCI-X to Conventional PCI Command Translation

PCI-X Command Conventional PCI Command
I/O Read I/O Read
I/O Write I/O Write
Configuration Read Configuration Read
Configuration Write Configuration Write
Memory Read DWORD Memory Read
Memory Read Block Memory Read or

Memory Read Line or
Memory Read Multiple

Memory Write Memory Write or
Memory Write and Invalidate

Memory Write Block Memory Write or
Memory Write and Invalidate

PCI-X I/O and configuration transactions that cross the bridge translate to the same
command on the conventional PCI interface.

The bridge must translate a PCI-X Memory Read DWORD command into a conventional
Memory Read command.

The bridge must translate a PCI-X Memory Read Block command into one of the three
conventional PCI memory read commands based on the byte count and starting address.
Following the guidelines in PCI 2.2, if the starting address and byte count are such that
only a single DWORD (or less) is being read, the conventional transaction uses the
Memory Read command. If the PCI-X transaction reads more than one DWORD but
does not cross a cacheline boundary (as indicated by the Cacheline Size register in the
conventional Configuration Space header), the conventional transaction uses the Memory
Read Line command. If the PCI-X transaction crosses a cacheline boundary, the
conventional transaction uses the Memory Read Multiple command.

If all byte enables of a PCI-X Memory Write command are set and the command starts
and ends on a cacheline boundary, the PCI-X bridge optionally translates the command
either to the Memory Write or Memory Write and Invalidate command on the
conventional PCI interface. Otherwise, the PCI-X Memory Write command translates to
the conventional Memory Write command.

If a PCI-X transaction using the Memory Write Block command starts and ends on a
cacheline boundary, the PCI-X bridge optionally translates the command either to the
Memory Write or Memory Write and Invalidate commands on the conventional PCI
interface. Otherwise, the PCI-X Memory Write Block command translates to the
conventional Memory Write command.

Revision 1.0b

173

8.4.3.2.2. Split Transaction to Delayed Transaction Conversion

If the PCI-X bridge forwards a transaction other than a memory write from a PCI-X
requester to a conventional completer, the bridge must follow Split Transaction rules on
the requester side and Delayed Transaction rules on the completer side.

All of the Delayed Transaction requirements specified in Bridge 1.1 apply to the
transactions the PCI-X bridge initiates on its conventional interface. For example, the
bridge must continue to repeat any transaction terminated with Retry until the target
completes it with some other termination.

All the Split Transaction rules of the PCI-X definition apply to the transactions the bridge
forwards from its PCI-X interface.

Transactions that originate on a PCI-X interface of a bridge follow the PCI-X ordering
and deadlock-avoidance rules shown in Table 8-3. All of the bypass cases required to
avoid deadlock are the same for conventional PCI and PCI-X, so the translation
introduces no additional requirement to avoid deadlocks. If the bridge executes several
Delayed Read Transactions on the conventional interface to collect the data for a single
Split Read Request on the PCI-X interface, the read data must be returned to the PCI-X
requester in address order. If the Relaxed Order attribute is set, the relaxed order bypass
path for PCI-X bridges (Row D, Column 2b in Table 8-3) is permitted (even though the
corresponding cases in conventional PCI is not allowed).

8.4.3.2.3. Creating a Split Completion

If a PCI-X bridge forwards any transaction other than a memory write from a PCI-X
requester to a conventional completer, the bridge must terminate the transaction on the
originating bus with Split Response. After the bridge executes the transaction on the
conventional interface, the bridge must create the Split Completion to return to the PCI-X
requester.

When the bridge creates the Split Completion, the bridge creates the Split Completion
address and Completer Attributes. It creates the Split Completion address from the
original request, the same way a PCI-X completer would (see Section 2.10.3). For the
Completer Attributes, the bridge creates a Completer ID that partially describes the
location of the conventional completer. If the conventional interface is the primary bus,
the bridge supplies the bus number from the Primary Bus Number register in the
conventional PCI Configuration Space header. If the conventional interface is the
secondary bus, the bridge supplies the bus number from the Secondary Bus Number
register. In both cases, the bridge sets the Device Number and Function Number fields to
zero.

8.4.4. Transaction Ordering and Passing Rules for Bridges

The rules presented in this section apply both to PCI-X bridges (Type 01h header and
Base Class 06h, Sub-Class 04h) and to application bridges (Type 00h header, Device
Complexity bit in PCI-X Status registers is 1, see Section 7.2.4).

PCI-X introduces two features that affect transaction ordering and passing rules that are
not present in conventional PCI. The first new feature is the Relaxed Ordering attribute
bit. See Sections 2.5 and 11 for a description of the cases in which this bit is set.

If the Relaxed Ordering attribute bit is set for a read transaction, the completion for that
transaction is permitted to pass previously posted memory write transactions traveling in

Revision 1.0b

174

the direction of the completion (Row D, Col 2b in Table 8-3). See Section 11 for more
details.

The Relaxed Ordering attribute bit for memory write transactions is used by host bridge
but not PCI-X bridges. If the Relaxed Ordering attribute bit is set for a memory write
transaction, that transaction is permitted to pass previously posted memory write
transactions moving in the same direction in the host bridge (Row A, Col 2b in
Table 8-3). In addition, the bytes within that transaction are permitted to be written to
system memory in any order. (The bytes must be written to the correct system memory
locations. Only the order in which they are written is unspecified). PCI-X bridges must
ignore the Relaxed Ordering attribute bit for a memory write transaction and maintain the
order of all memory write transactions that cross them.

Implementation Note: Relaxed Write Ordering in Host Bridges and
PCI-X Bridges

Host bridges that connect the PCI-X bus to multiple main-memory subsystems benefit
greatly from the use of the Relaxed Ordering attribute on memory write transactions. In
such systems, an unordered write to main memory is faster because writes to one memory
controller are not required to wait for the completion of previous writes to another
memory controller. (See Section 11 for additional details.)

PCI-X bridges are not allowed to rearrange the order of memory write transactions for
two reasons. First, there would be little benefit to the system in allowing it. Most
memory write transactions moving upstream share a common target, the host bridge. If
the host bridge cannot accept one memory write, it is likely that it cannot accept any
memory writes. Furthermore, the required acceptance rules for devices guarantee that
memory write transactions moving downstream are rarely blocked (see Section 2.13).

The second reason the PCI-X definition does not allow PCI-X bridges to rearrange the
order of memory write transactions is that some host bridges invalidate ranges of main
memory locations based on the starting address and byte count of a write transaction. If a
PCI-X bridge were to rearrange two memory write transactions from the same Sequence
(same Sequence ID), the second transaction would invalidate the memory locations
updated by the first.

The second new feature is Split Transactions. Split Transaction ordering and deadlock-
avoidance rules are almost identical to the rules for Delayed Transactions in conventional
PCI. The order of transactions is established when they complete. Split Requests can be
reordered with respect to other Split Requests. If an initiator requires two Split
Transactions to complete in order, the initiator must not issue the second request until the
first Split Transaction completes.

Split Completions have the same ordering requirements as Delayed Completions in
conventional PCI, except in two cases. First, Split Read Completions with the same
Sequence ID (that is, Split Read Completion transactions that originate from the same
Split Read Request) must stay in address order (Row D, Col 5b in Table 8-3). The
completer must supply the Split Read Completions on the bus in address order, and any
intervening bridges must preserve this order. This guarantees that the requester always
receives the data in its natural order. Split Read Completions with different Sequence
IDs have no ordering restrictions (Row D, Col 5a in Table 8-3, the same as Delayed Read
Completions). The second case in which Split Read Completion ordering rules are
different from Delayed Read Completion rules is if the Relaxed Ordering bit is set
(Row D, Col 2b in Table 8-3) as described above.

Table 8-3 lists the ordering requirements for all Split Transactions and memory write
transactions. The columns represent the first of two transactions, and the rows represent

Revision 1.0b

175

the second. The table entry indicates what a bridge operating on both transactions is
required to do. The choices are:

• Yes—the second transaction must be allowed to pass the first to avoid deadlock.

• Y/N—there are no requirements. The bridge may optionally allow the second
transaction to pass the first or be blocked by it.

• No—the second transaction must not be allowed to pass the first transaction. This is
required to preserve strong write ordering.

Table 8-3: Transactions Ordering and Deadlock-Avoidance Rules

Row pass Col.?
Memory
Write
(Col 2)

Split Read
Request
(Col 3)

Split Write
Request
(Col 4)

Split Read
Completion
(Col 5)

Split Write
Completion
(Col 6)

Memory Write
(Row A)

a) No
b) Y/N

Yes Yes Yes Yes

Split Read Request
(Row B) No Y/N Y/N Y/N Y/N
Split Write Request
(Row C) No Y/N Y/N Y/N Y/N
Split Read
Completion (Row D)

a) No
b) Y/N

Yes Yes a) Y/N
b) No

Y/N

Split Write
Completion (Row E) Y/N

Yes Yes Y/N Y/N

Case-by-case discussion:

A2a For host bridges when the Relaxed Ordering attribute bit is not set and for
PCI-X bridges, a memory write transaction must not pass any other memory
writes. (Same as conventional PCI.)

A2b For host bridges when the Relaxed Ordering attribute bit is set, that memory
write transaction is permitted to pass all previously posted memory writes in
the host bridge (not PCI-X bridges). In addition, the data within that
transaction is permitted to be re-ordered enroute to system memory.

A3, A4 A memory write transaction must be allowed to pass Split Requests to avoid
deadlocks. (These Split Transactions in PCI-X have the same requirements as
Delayed Transactions in conventional PCI.)

A5, A6 A memory write transaction must be allowed to pass Split Completions to
avoid deadlocks. (These Split Transactions in PCI-X have the same
requirements as Delayed Transactions in conventional PCI.)

B2, C2 Split Requests cannot pass a memory write transaction. This preserves strong
write ordering as did the analogous rule for Delayed Requests in conventional
PCI.

B3, B4,
C3, C4

Split Requests are permitted to be blocked by or to pass other Split Requests.
(These Split Transactions in PCI-X have the same requirements as Delayed
Transactions in conventional PCI.)

Revision 1.0b

176

B5, B6,
C5, C6

Split Requests are permitted to be blocked by or to pass Split Completions.
In most PCI-X implementations, Split Requests are managed in separate
buffers from Split Completions, so Split Requests naturally pass Split
Completions. However, no deadlocks occur if Split Completions block Split
Requests.

D2a Unless the Relaxed Ordering attribute bit is set, Split Read Completions
cannot pass a memory write. This preserves strong write ordering as did the
analogous rule for Delayed Completions in conventional PCI.

D2b If the Relaxed Ordering attribute bit is set, that Split Read Completion is
permitted to pass a previously posted memory write transaction.

D3,
D4, E3,
E4

Split Completions must be allowed to pass Split Requests to avoid deadlocks.
(These Split Transactions in PCI-X have the same requirements as Delayed
Transactions in conventional PCI.)

D5a Unless two Split Read Completions are part of the same Sequence (i.e., they
have the same Sequence ID), they are allowed to be blocked by or to pass
each other. (Split Read Completions with different Sequence ID in PCI-X
have the same requirements as Delayed Transactions in conventional PCI.)

D5b Split Read Completions with the same Sequence ID must remain in address
order.

D6 Split Read Completions are permitted to be blocked by or to pass Split Write
Completions. (These Split Transactions in PCI-X have the same
requirements as Delayed Transactions in conventional PCI.)

E2 Split Write Completions are permitted to be blocked by or to pass memory
write transactions. Such write Sequences are actually moving in the opposite
direction and, therefore, have no ordering relationship. (These Split
Transactions in PCI-X have the same requirements as Delayed Transactions
in conventional PCI.)

E5, E6 Split Write Completions are permitted to be blocked by or to pass Split Read
Completions and Split Write Completions. (These Split Transactions in
PCI-X have the same requirements as Delayed Transactions in conventional
PCI.)

8.4.5. Required Acceptance Rules for Bridges

The rules presented in this section apply both to PCI-X bridges (Type 01h header and
Base Class 06h, Sub-Class 04h) and to application bridges (Type 00h header, Device
Complexity bit in PCI-X Status registers is 1; see Section 7.2.4).

A bridge must never make the acceptance (posting) of a memory write transaction as a
target contingent on the prior completion of a non-locked transaction that the bridge
initiates on the same bus.

A bridge is permitted to terminate with Retry or Disconnect at Next ADB a memory
write transaction that crosses the bridge only if the bridge’s locations for storing such
transactions are full of previously posted memory write transactions moving in the same
direction. Bridges are not subject to the Maximum Completion Time limit that simple
devices have for accepting memory write transactions. However, to provide backward
compatibility with PCI-to-PCI bridges designed to revision 1.0 of the PCI-to-PCI Bridge
Architecture Specification (prior to Delayed Transactions), all PCI-X bridges are required
to accept memory write transactions regardless of how many previous Split Transactions

Revision 1.0b

177

the bridge has enqueued. (This is analogous to the requirement in PCI 2.2 for
conventional bridges to accept memory writes even while executing Delayed
Transactions.)

A bridge that is executing one Split Transaction from one interface (i.e., issued a Split
Response on that interface) is permitted to terminate with Retry a non-posted transaction
on that interface until the previous Split Transaction is complete (i.e., the bridge sent all
Split Completion data for the Sequence or a Split Completion Message to the requester).
Bridges are permitted to execute a limited number of Split Transactions at a time.

Implementation Note: Retry of a Read Transaction to Flush a Prior
Posted Memory Write

PCI 2.2 permits a bridge acting as a target to terminate a read transaction with Retry if the
ordering rules require the bridge to initiate a previously posted memory write transaction.
This case is not allowed for PCI-X bridges operating in PCI-X mode. In most cases,
PCI-X bridges terminate read transactions with Split Response. The ordering rules
require the bridge to initiate a previously posted memory write before initiating the Split
Completion.

In some cases, the bridge’s Split Request resources are consumed with previously
enqueued Split Requests. In such cases, the bridge terminates read transactions with
Retry until Split Request resources become available. The transaction ordering rules
require the bridge to continue to initiate memory writes during this time.

A bridge is permitted to terminate a Split Completion transaction with Retry or
Disconnect at Next ADB when its buffers are full for one of following reasons:

1. The contents of the Split Transaction Commitment Limit field is larger than the
contents of the Split Transaction Capacity field in the appropriate Split Transaction
Control register, allowing the bridge to forward more Split Requests than it has room
for Split Completions.

2. A corrupted Split Completion (i.e., a Split Completion whose size or address did not
match its Split Request, or a corrupt Requester Bus Number field in the Split
Completion address caused it to cross the wrong bridge) crossed the bridge some
time since the last rising edge of RST#.

Section 8.4.1 describes when bridge buffers are considered full.

8.4.6. Forwarding Memory Write Transactions

As in conventional PCI, PCI-X bridges are required to post memory write transactions
that cross the bridge in either direction if space is available in the bridge. The conditions
under which the bridge is permitted to terminate a memory write transaction with Retry
are specified in Section 8.4.5.

With one exception, a PCI-X bridge’s memory write buffers are considered full when less
than two ADQs of buffer space are available. In the exception case, a PCI-X bridge is
permitted to accept a new memory write transaction with less than two ADQs of buffer
space available if that bridge provides alternate means for guaranteeing that it never holds
a memory write transaction that is too short to forward correctly, as described below.

Revision 1.0b

178

A bridge with less than two ADQs of buffer space is not permitted to terminate a memory
write transaction on the originating bus with Disconnect at Next ADB if both of the
following are true:

• The transaction would otherwise cross the ADB

• Such a disconnection would cause the bridge to hold a portion of the transaction that
would occupy less than four data phases on the destination data bus.

Implementation Note: Terminating a Memory Write Transaction with
Disconnect at Next ADB

If a memory write Sequence addresses a completer on the other side of a PCI-X bridge, a
bridge with less than two ADQs of buffer space for memory write transactions must not
signal Disconnect at Next ADB if such a disconnection would cause the bridge to hold a
portion of the memory write Sequence that is too small to forward correctly on the
destination bus. The problem occurs if the byte count of the Sequence indicates the
Sequence extends beyond the next ADB, but the portion of the Sequence that the bridge
holds would require less than four data phases on the destination bus. If the bridge
attempted to forward such a portion of a memory write Sequence, and the target on the
destination bus (completer or bridge) signaled Data Transfer (indicating its ability to
accept data beyond the ADB), the bridge would be unable to disconnect the transaction at
the ADB. The byte count of the Sequence would indicate to the target that the
transaction should continue, but the write data would not be available in the bridge.

Although that PCI-X bridge would be allowed to signal Disconnect at Next ADB for
transactions other than the problem case described above, the logic required to select
precisely this case is complex. The problem case is a function of the starting address, the
width of the destination bus, and the width of the completer. The recommended simpler
alternative is to provide a minimum of two ADQs of buffer space for memory write
transactions. In such an implementation, the bridge would signal Retry to memory write
transactions if the buffer space available in the bridge for memory write data was less
than two ADQs. With a minimum of two ADQs of buffer space, a bridge would not
signal Disconnect at Next ADB until it reached the end of the second ADQ, thereby
eliminating the risk of holding too little of the write data.

Memory write transactions that are part of the same Sequence have the following
characteristics:

• They have the same Sequence ID and other attributes (except byte count).

• The address of each transaction increments by the number of bytes in the previous
transaction of the Sequence.

• The byte count of each transaction is the total number of bytes remaining in the
Sequence.

If both interfaces of a PCI-X bridge are operating in PCI-X mode, and the bridge
forwards a memory write Sequence from a requester on one side of the bridge to a
completer on the other side of the bridge, the bridge must preserve the integrity of the
memory write Sequence on the destination bus. That is, transactions that are part of the
same Sequence on one side of the bridge must remain part of the same Sequence on the
other side of the bridge. The Sequence on the destination bus must use the same
Sequence ID and other attributes (except byte count) as the Sequence on the source bus,
and the byte count of each transaction must be the full remaining byte count of the
Sequence. (See Section 8.4.3 for the case in which one or the other interface is operating
in conventional mode.)

Revision 1.0b

179

In some cases in which a host bridge or conventional PCI bridge has combined write
transactions, a single write Sequence crosses a PCI-X bridge range address. If the
starting address of the Sequence addresses a completer on the other side of a bridge but
one or more addresses within the Sequence do not, the bridge must do both of the
following:

• Forward the portion of the write transaction that addresses the completer on the other
side of the bridge. The bridge must modify the byte count of the Sequence on the
destination bus to be the number of bytes between the starting address and the
address limit of the bridge.

• Disconnect the Sequence on the source bus when it reaches the bridge’s address
limit.

Implementation Note: Burst Write Sequences that Cross Bridge
Boundaries

Burst write Sequences cross a bridge range address as a result of write combining in a
host bridge or conventional PCI bridge. The PCI-X bridge requirements in this case
effectively undo that combining. By restoring the byte count on the destination bus to the
number of bytes between the starting address and the bridge limit, the bridge guarantees
that a write Sequence is not initiated on the destination bus with a byte count that will not
be completed on that bus. (See Section 2.1 for the requirement for the requester to
deliver the full byte count of a burst write Sequence.)

By disconnecting the Sequence on the source bus when it reaches the bridge limit, the
bridge allows another completer (or bridge) to claim the remainder of the Sequence on
the source bus.

A bridge is permitted to disconnect memory write transactions on the destination bus
(e.g., if the bridge’s data buffers become empty). Memory write transactions are also
subject to being disconnected by the target on the destination bus. However, when the
PCI-X bridge continues forwarding a memory write Sequence after a disconnection, it
does so with transactions that preserve the integrity of the original Sequence.

Combining memory write transactions that originate from the same Sequence is
permitted. That is, if two or more memory write transactions are part of the same
Sequence on the source bus, the bridge is permitted to combine them into a single
transaction on the destination bus, provided that such combining does not violate the
bridge ordering rules. (See Section 8.4.4.) Combining memory write transactions that
originate from different Sequences is not permitted.

8.5. Exclusive Access

An exclusive access is one or more Sequences that use the LOCK# signal as described in
this section to guarantee that other Sequences that share a PCI-X bridge in the path to the
completer are not executed until after the exclusive access is complete. A Sequence that
is part of an exclusive access is referred to as a locked Sequence.

As in conventional PCI, a host bridge can initiate an exclusive access only to prevent a
deadlock for a Sequence that originates on the host bus. As in conventional PCI, PCI-X
bridges only propagate an exclusive access downstream (away from the host bridge) and
are never allowed to initiate an exclusive access of their own.

Exclusive accesses on a bus segment operating in PCI-X mode are only defined for
Sequences that cross a PCI-X bridge or application bridge and are initiated by a host
bridge or another PCI-X bridge. If an expansion-bus bridge (e.g., PCI-to-EISA)

Revision 1.0b

180

operating in PCI-X mode must initiate an exclusive access on the PCI bus, the expansion-
bus bridge must use sideband signaling or other methods beyond the scope of this
specification. All other PCI-X devices must ignore LOCK#.

The bridge (host bridge or PCI-X bridge) closest to the completer initiates an exclusive
access on the bus with the completer the same as it would if the Sequences crossed an
additional bridge on their way to the completer. However, the completer ignores
LOCK# and executes the Sequences the same as a non-exclusive access.

As in conventional PCI, the PCI -X exclusive access mechanism allows non-exclusive
accesses to proceed in the face of exclusive accesses if there is no conflict for a shared
resource. This allows the host bridge to extend an exclusive access across several
Sequences without interfering with non-exclusive data transfers, such as real-time video,
between two other devices on the same bus segment. The mechanism is based on locking
only the conventional PCI and PCI-X bridges in the path between the host bridge and the
completer and is called a resource lock.

Since upstream exclusive accesses are not supported by the PCI-X definition (except for
expansion-bus bridges, which are beyond the scope of this specification), the PCI-X
definition assumes that the source bridge is the only device that is permitted to initiate an
exclusive access. That is, the source bridge has exclusive use of LOCK#. For clarity,
only exclusive accesses that flow downstream are described. For example, the source
bridge (host bridge or PCI-X bridge) is always described as initiating the exclusive access
on its secondary bus. A downstream bridge is described as responding on its primary
bus. The direction of flow of an exclusive access from an expansion-bus bridge that
addresses main memory is not described, but would be opposite.

The PCI-X definition describes the establishment of lock on a single bus. In this section,
the PCI-X definition uses the terms “upstream bridge” and “downstream bridge” to refer
to the two bridges that establish lock on a single bus. A PCI-X bridge that is the
downstream bridge on its primary bus is the upstream bridge when it forwards the locked
Sequence to its secondary bus. To execute an exclusive access, lock state must be
established on each PCI bus between the requester and the completer.

The following paragraphs describe the behavior of an upstream bridge and a downstream
bridge for an exclusive access. A detailed discussion of how to start, continue, and
complete an exclusive access follows the summary of the rules.

Upstream bridge rules for supporting LOCK#:

1. All Sequences of a single exclusive access address the same completer.

2. The first transaction of an exclusive access must be a read transaction.

3. LOCK# must be asserted the clock2 following the address phase and kept asserted to
maintain control.

4. LOCK# must be released if the initial transaction of the exclusive access is
terminated with Retry3. (Lock was not established.)

5. LOCK# must be released whenever a locked Sequence is terminated by Target-Abort
or Master-Abort.

6. LOCK# must be released between consecutive4 exclusive accesses.

2 For a single address cycle, this is the clock after the address phase. For a dual address cycle, this is the
clock after the first address phase.

3 Once lock has been established, the initiator retains ownership of LOCK# when terminated with Retry.

Revision 1.0b

181

7. To release LOCK#, the initiator must deassert LOCK# for a minimum of one clock
while the bus is in the Idle state.

Downstream bridge rules for supporting LOCK#:

1. A bridge acting as a target of a transaction locks its primary interface when LOCK#
is deasserted during the first (or only) address phase and is asserted on the following
clock.

2. Once in a locked state (as described in Section 8.5.1), a bridge’s primary interface
remains locked until both FRAME# and LOCK# are deasserted on the primary bus,
regardless of how transactions are terminated on the primary bus.

3. The bridge is not allowed to accept any new requests from the primary bus while it is
in a locked state except from the initiator of the exclusive access (as described in
Section 8.5.2). The bridge accepts Split Completions from any initiator while in a
locked state.

8.5.1. Starting an Exclusive Access

As in conventional PCI, when a device (host bridge or PCI -X bridge) initiates an
exclusive access, it checks the internally tracked state of LOCK# before asserting its
REQ#. When the initiator is granted access to the bus, the initiator is free to start an
exclusive access when the current transaction ends. The first transaction of an exclusive
access must be a memory read transaction. If the transaction uses a single address cycle,
the initiator must assert LOCK# on the clock following the address phase. If the
transaction uses a dual address cycle, the initiator must assert LOCK# on the clock
following the first address phase.

There are three cases for the first transaction of an exclusive access, depending upon the
termination signaled by the target. Each of these cases is presented separately.

• Retry, Target-Abort, and Master-Abort.

• Other Immediate Transactions (Data Transfer, Single Data Phase Disconnect,
Disconnect at Next ADB).

• Split Transaction (Split Response).

If the target terminates the first transaction of an exclusive access with Retry, Target-
Abort, or Master-Abort, the initiator terminates the transaction and releases LOCK#.

If the target executes the first transaction of an exclusive access as any other Immediate
Transaction (target signals Data Transfer, Single Data Phase Disconnect, Disconnect at
Next ADB), lock is established on the bus when the target signals its acceptance of the
first data phase of the transaction. Since a PCI-X bridge is required to complete all
memory read transactions as Split Transactions (if the bus is operating in PCI-X mode),
this case occurs only if the target is the completer. Once lock is established, the upstream
bridge continues to assert LOCK# even after the end of the first locked transaction.

Figure 8-1 illustrates starting an exclusive access with an Immediate Transaction.
LOCK# is deasserted during the address phase (or first address phase for dual address
cycle) and asserted one clock later (clock 4) to start the exclusive access.

4 Consecutive refers to back-to-back exclusive accesses and not a continuation of the current exclusive
access.

Revision 1.0b

182

PCI_CLK

1 2 3 4 5 6 7 8 9

DEVSEL#

TRDY#

LOCK#

FRAME#

ADDRESSAD DATA-0ATTR

IRDY#

Figure 8-1: Starting an Exclusive Access with an Immediate Transaction

Starting an exclusive access with a Split Transaction is similar to starting an exclusive
access with a Delayed Transaction in conventional PCI. If the first transaction of an
exclusive access is executed as a Split Transaction, the upstream bridge continues to
assert the LOCK# signal even after the target (completer or downstream bridge) signals
Split Response. This condition is referred to as initiator-lock. In the initiator-lock state
the upstream bridge continues to accept upstream transactions.

In the initiator-lock state the upstream bridge is permitted to initiate other unlocked
downstream transactions, including Split Completions, by keeping LOCK# asserted
throughout the transaction (including the first address phase, see Section 8.5.3).
However, the upstream bridge must not depend upon such transactions completing until
after the exclusive access. Otherwise a deadlock could occur, since such an unlocked
transaction could address a completer on the other side of a locked downstream bridge
and be terminated with Retry by the bridge. (See Section 8.5.3.)

The downstream bridge locks its primary interface when it terminates the first locked
read request with Split Response, even though no data has transferred. As in
conventional PCI, this condition is referred to as target-lock because only the
downstream bridge’s primary target interface is locked. A downstream bridge acting as a
target for an exclusive accesses must latch LOCK# during the first (or only) address
phase. Otherwise, it cannot determine if the access is locked when decode completes. If
the bus is operating in PCI-X mode, a downstream bridge enters the target-lock state if
and only if LOCK# is deasserted during the first (or only) address phase and is asserted
on the next clock, and the downstream bridge terminates the transaction with Split
Response.

While in the target-lock state, the downstream bridge enqueues no new requests on the
primary interface and terminates them with Retry. The downstream bridge is permitted
to accept Split Completions from its primary interface and to initiate transactions on its
primary interface while in the target-lock state. The downstream bridge executes all
previously enqueued requests flowing downstream before forwarding the first locked
read request of an exclusive access to the secondary bus. The downstream bridge locks
its secondary interface when it repeats the process described above and establishes lock
as the upstream bridge on its secondary bus.

If the Split Completion for the locked read request is a Split Completion Message that
indicates an error occurred (Split Completion Error bit set in the completer attributes, see
Section 2.10.4), the upstream bridge exits the initiator-lock state and releases LOCK#.

Revision 1.0b

183

Otherwise, the initiator-lock state on the upstream bridge and the target-lock state on the
downstream bridge both become full-lock states when the upstream bridge accepts at least
one data phase of the Split Completion transaction for the locked read request. Lock is
established on the bus when the upstream bridge enters the full-lock state.

Figure 8-2 illustrates starting an exclusive access with a Split Transaction.

PCI_CLK

1 2 3 4 5 6 7 8 9

ADDRESSAD DATA-0ATTR

FRAM E#

LO CK#

IRDY#

TRDY#

DEVSEL#

Figure 8-2: Starting an Exclusive Access with a Split Transaction

Once lock is established on the bus, the upstream bridge keeps LOCK# asserted until
either the exclusive access completes or an error (Master-Abort, Target-Abort, or a Split
Completion Message indicating an error) causes an early termination. Target termination
of Retry is allowed after lock is established. If a locked transaction from the upstream
bridge is terminated by the target (downstream bridge or completer) with Retry after lock
has been established, the target is indicating it is currently busy and unable to complete
the requested data phase. Lock remains established and both the upstream and
downstream bridges remain in the full-lock state. The target accepts the transaction when
it is not busy.

While lock is established, the upstream bridge does not accept any upstream transactions,
except Split Completions. The upstream bridge terminates all other upstream
transactions with Retry. While lock is established, the downstream bridge must only
accept requests on its primary interface if LOCK# is deasserted during the first (or only)
address phase (which indicates that the transaction is a continuation of the exclusive
access by the upstream bridge), or if the transaction is a Split Completion. Otherwise, the
downstream bridge terminates all transactions (other than Split Completions) with Retry
on its primary bus. A downstream bridge remains in the locked state until both
FRAME# and LOCK# are deasserted on the primary bus.

Note that a bridge that forwards a locked Sequence controls LOCK# on its secondary bus
but not its primary bus. The host bridge that initiates the Sequence controls LOCK# on
its PCI bus. If a locked bridge forwards a transaction upstream (including a Split
Completion associated with a locked Split Request), the primary bus LOCK# remains
asserted throughout the transaction. (That is, the downstream bridge does not own
LOCK# on the primary bus interface and, therefore, does not have control of LOCK# to
deassert it on the primary bus during the address phase.)

All bridges must continue to accept outstanding Split Completions moving in either
direction (except as noted in Section 8.4.5) while lock is established.

Revision 1.0b

184

Non-exclusive accesses to other completers on the same bus segment or behind other
unlocked bridges are allowed to execute while LOCK# is asserted. However, the
requester must not depend upon such transactions completing until after the exclusive
access. (Such an unlocked transaction could be blocked by other transactions that cross a
locked bridge.)

8.5.2. Continuing an Exclusive Access

A PCI-X initiator continues an exclusive access the same way as in conventional PCI.
Figure 8-3 shows an upstream bridge continuing an exclusive access, and the completer
(on the same bus segment) executing the transaction as an Immediate Transaction. When
the upstream bridge is granted access to the bus, it starts another locked Sequence.
LOCK# is deasserted during the first (or only) address phase to continue the exclusive
access. The completer ignores LOCK# and responds to the request. The upstream
bridge asserts LOCK# on clock 4 to keep lock established beyond the end of the current
transaction.

If the upstream bridge is continuing the exclusive access, it continues to assert LOCK#.
When the upstream bridge completes the exclusive access, it deasserts LOCK# after the
completion of the last data phase, which occurs on clock 8. Refer to Section 8.5.4 for
more information on completing an exclusive access.

PCI_CLK

1 2 3 4 5 6 7 8 9

DEVSEL#

TRDY#

IRDY#

LO CK#

FRAM E#

ADDRESSAD DATA-0ATTR

Figure 8-3: Continuing an Exclusive Access, Immediate Transaction

If an upstream bridge continues an exclusive access with a read transaction, and the
completer is behind a downstream bridge (and the bus is operating in PCI-X mode), the
downstream bridge signals Split Response to the read transaction. Such a transaction
would appear the same as shown in Figure 8-3, except the target termination would be
Split Response rather than Data Transfer. In such a case, the upstream bridge deasserts
LOCK# during the first (or only) address phase to continue the exclusive access, and
asserts LOCK# one clock later to keep lock established beyond the end of the current
transaction. The downstream bridge recognizes the request as a continuation of the
exclusive access and responds to the request with Split Response. After the downstream
bridge completes the transaction on its secondary bus, it initiates the Split Completion on
its primary bus. LOCK# remains asserted throughout the Split Completion, since
LOCK# is asserted by the upstream bridge.

Revision 1.0b

185

8.5.3. Accessing a Locked Bridge

Figure 8-4 shows an initiator trying a non-exclusive, downstream access (other than a
Split Completion) to a locked bridge. If the downstream bridge’s primary interface is
locked (full-lock or target-lock) and LOCK# is asserted during the address phase, the
downstream bridge terminates the transaction with Retry and no data is transferred.

1 2 3 4 5 6 7 8 9

DEVSEL#

STO P#

TRDY#

IRDY#

FRAM E#

ADDRESSAD DATA-0ATTR

PCI_CLK

LO CK#

�� ��

Figure 8-4: Accessing a Locked Downstream Bridge

8.5.4. Completing an Exclusive Access

If the final transaction of an exclusive access is an Immediate Transaction, LOCK# is
deasserted during the first (or only) address phase and then re-asserted until the
transaction terminates successfully (as described in Section 8.5.2). The upstream bridge
is permitted to deassert LOCK# on any clock after the transaction has completed.
However, it is recommended that the upstream bridge deassert LOCK# when it deasserts
IRDY# following the completion of the last data phase of the transaction. In some cases,
deasserting LOCK# at any other time results in a subsequent transaction being
terminated with Retry unnecessarily.

If the final transaction of an exclusive access is a Split Transaction, the upstream bridge
keeps LOCK# asserted until the end of the Split Completion transaction that terminates
the Sequence (i.e., byte count for the request is satisfied or an error occurs). The
upstream bridge is permitted to deassert LOCK# on any clock after the Split Completion
has completed. However, it is recommended that the upstream bridge deassert LOCK#
when it deasserts TRDY# at the end of the Split Completion.

The downstream bridge unlocks itself whenever LOCK# and FRAME# are deasserted
on its primary interface. The downstream bridge deasserts LOCK# on its secondary bus
on any clock after that, and is recommended to do so as soon as possible to avoid
subsequent transactions being terminated with Retry unnecessarily.

If an upstream bridge wants to execute two independent exclusive accesses on the bus, it
must ensure a minimum of one clock between exclusive accesses in which both
FRAME# and LOCK# are deasserted. This ensures any downstream bridge locked by
the first exclusive access is released prior to starting the second.

Revision 1.0b

186

8.6. PCI-X Bridge (Type 01h) Configuration Registers

8.6.1. PCI-X Effects on Conventional Bridge Configuration Space Header

PCI-X bridges include the standard Type 01h Configuration Space header defined in
Bridge 1.1. In conventional PCI mode, all of these registers function exactly as specified
there. If either interface of the device is initialized to PCI-X mode, the requirements for
these registers change as follows:

1. Base Address Registers—If the primary interface is in PCI-X mode and the Base
Address registers (BARs) (other than the Expansion ROM Base Address register)
request memory resources, the BARs must support 64-bit addressing as described in
PCI 2.2. The Prefetchable bit must be set unless the range contains locations with
read side effects. (See Section 2.12.1 for more details.)

2. If the primary interface is in PCI-X mode, the Prefetchable Memory Base and Limit
registers and Prefetchable Base and Limit Upper 32 Bits registers are required.

3. Secondary Bus Number—System configuration software must not change the value
in the Secondary Bus Number register while secondary devices have incomplete Split
Transactions anywhere in the system. This is generally done by changing the
Secondary Bus Number registers only when the system is being initialized (before
device drivers load), or after all devices have been quiesced (for a hot-plug
operation), or the secondary RST# signal from the bridge is asserted. After the
Secondary Bus Number register is changed, system configuration software must
execute at least one Configuration Write transaction to each device on the bridge’s
secondary bus. (This initializes the Bus Number registers in the secondary devices.
See Sections 2.7.2.2 and 7.2.4.)

4. Latency Timer Register—The default value of the appropriate Latency Timer register
is 64 if that interface is in PCI-X mode. (See Section 4.4 for more details.)

5. Cacheline Size Register—The contents of this register are ignored by an interface in
PCI-X mode. If one interface is in conventional PCI mode, that interface continues
to use this register as defined in PCI 2.2.

6. The Discard Timer control bits in the Bridge Control register are ignored if the
appropriate interface is in PCI-X mode. Delayed Transactions are not supported in
PCI-X mode.

7. Command Register—If the primary interface is in PCI-X mode, the Command
register is restricted as described in Section 7.1.

8. Status Register—If the primary interface is in PCI-X mode, the Status register is
restricted as described in Section 7.1.

Revision 1.0b

187

9. Bridge Control Register—
Fast Back-to-Back Enable: Ignored by the bridge if the secondary interface is in
PCI-X mode.

Primary Discard Timer: Ignored by the bridge if the primary interface is in PCI-X
mode.

Secondary Discard Timer: Ignored by the bridge if the secondary interface is in PCI-
X mode.

Discard Timer Status: This bit is never set for an interface that is in PCI-X mode.

Discard Timer SERR# Enable: Ignored by the bridge in PCI-X mode.

10. Secondary Status Register—If the secondary interface is in PCI-X mode, the
Secondary Status register is restricted as described below:
Fast Back-to-Back Capable: This bit must be set to 0 in PCI-X mode.

Detected Parity Error and Master Data Parity Error: These bits are set as described
in Section 5.4.1.

DEVSEL timing: Indicates conventional DEVSEL# timing regardless of the
operating mode.

8.6.2. PCI-X Bridge Capabilities List Item

PCI-X bridges include a Type 01h Configuration Space header as defined in Bridge 1.1
and include a PCI-X Capabilities List item as shown in Figure 8-5.

If the bridge is installed on an add-in card, the connection of the PCIXCAP pin of the
add-in card must be consistent with the presence of this Capability List item in the first
bridge on the card. That is, the connection of the PCIXCAP pin must indicate the card is
capable of operating in PCI-X mode if and only if the PCI-X Capability List item is
present in the bridge that connects to the PCI connector of the add-in card (not behind
another bridge). If that bridge is part of a multifunction device, all functions within that
device must include a PCI-X Capability List item. See Section 7.2 for PCI-X Capability
List item for non-bridge functions. See Section 9.10 for the connection of the PCIXCAP
pin.

31 24 23 16 15 8 7 0
PCI-X Secondary Status Next Capability PCI-X Capability ID

PCI-X Bridge Status
Upstream Split Transaction Control

Downstream Split Transaction Control

Figure 8-5: PCI-X Capabilities List Item for a Type 01h Configuration Header

Revision 1.0b

188

Implementation Note: PCI-X Bridge Registers Optimized for
Forwarding Transactions

The PCI-X Bridge Capability List item is structured for forwarding transactions from one
interface of the bridge to another. It does not include features found in the PCI-X
Command and Status registers of non-bridge devices, such as control of data parity error
recovery, relaxed ordering, or number and size of Split Transactions the device is allowed
to have outstanding (see Sections 7.2.3 and 7.2.4).

In some applications a bridge device also includes other features that are beyond the
scope of this specification, such as a DMA engine. If a bridge with a Type 01h
Configuration Space header includes such features in a single device-function, the system
has no PCI-X Command register with which to manage the Sequences initiated by the
device. In some systems this prevents standard software from controlling recovery from
parity errors from the device, or leads to uneven sharing of system resources or
suboptimal system performance.

Preferably, the additional features can be implemented as a separate device-function (i.e.,
a multi-function device with the bridge). This second function would use a Type 00h
Configuration Space header and a standard PCI-X Capability List item, which includes
the PCI-X Command register and the (Type 00h) PCI-X Status register. In this
implementation, the system is able more effectively to manage the additional function
and Sequences it initiates.

Implementation Note: PCI-X Capabilities List Item for Application
Bridges

Application bridges use a Type 00h Configuration Space header and a PCI-X Capabilities
List item defined in Section 7.2. Since the structure of that list item is defined to meet the
needs of general PCI-X devices, it does not include registers for bridge-specific
functions. Some application bridges require configuration of features similar to those
described here for the PCI-X bridges. Such application bridges must implement
additional registers in device-specific Configuration Space as required to support their
application. These registers must be initialized by the device driver or by local
intelligence within the application hardware.

8.6.2.1. PCI-X ID

This register identifies this item in the Capabilities List as a PCI-X register set. It is read-
only, returning 07h when read (the same as PCI-X devices with a Type 00h
Configuration Space header).

8.6.2.2. Next Capabilities Pointer

This register points to the next item in the Capabilities List as required by PCI 2.2.

Revision 1.0b

189

8.6.2.3. PCI-X Secondary Status Register

This register reports status information about the secondary bus.

Table 8-4: PCI-X Secondary Status Register

Bit
Location

Description

0 64-bit Device. (read-only)
This bit indicates the width of the bridge’s secondary AD interface.

0 = The bus is 32 bits wide.
1 = The bus is 64 bits wide.

1 133 MHz Capable. (read-only)
This bit indicates that the bridge’s secondary interface is capable of
133 MHz operation in PCI-X mode.

0 = The maximum operating frequency is 66 MHz.
1 = The maximum operating frequency is 133 MHz.

2 Split Completion Discarded. (write 1 to clear)
This bit is set if the bridge discards a Split Completion moving toward the
secondary bus because the requester would not accept it. See
Sections 8.7.1.5 and 8.7.1.6 for details. Once set, this bit remains set until
software writes a 1 to this location. State after RST# is 0.

0 = No Split Completion has been discarded.
1 = A Split Completion has been discarded.

3 Unexpected Split Completion. (write 1 to clear)
This bit is set if an unexpected Split Completion with a Requester ID equal
to the bridge’s secondary bus number, device number 00h, and function
number 0 is received on the bridge’s secondary interface. See
Section 5.4.5 for more details. Once set, this bit remains set until software
writes a 1 to this location. State after RST# is 0.

0 = No unexpected Split Completion has been received.
1 = An unexpected Split Completion has been received.

4 Split Completion Overrun. (write 1 to clear)
This bit is set if the bridge terminates a Split Completion on the secondary
bus with Retry or Disconnect at Next ADB because the bridge buffers are
full. It is used by algorithms that optimize the setting of the downstream
Split Transaction Commitment Limit register. See Sections 8.4.2.1 and 13.2
for more details.

The bridge is also permitted to set this bit in other situations that indicate
that the bridge commitment limit is too high. For example, if the bridge
stores immediate completion data in the same buffer area as Split
Completion data, the completer executes the transaction as an Immediate
Transaction, and the bridge disconnects the transaction because the buffers
became full.

Once set, this bit remains set until software writes a 1 to this location. State
after RST# is 0.

0 = The bridge has accepted all Split Completions.
1 = The bridge has terminated a Split Completion with Retry or

Disconnect at Next ADB because the bridge buffers were full.

Revision 1.0b

190

Bit
Location

Description

5 Split Request Delayed. (write 1 to clear)
This bit is set any time the bridge has a request to forward a transaction on
the secondary bus but cannot because there is not enough room within the
limit specified in the Split Transaction Commitment Limit field in the
Downstream Split Transaction Control register. It is used by algorithms that
optimize the setting of the downstream Split Transaction Commitment Limit
register. See Sections 8.4.2.1 and 13.2 for more details. Once set, the bit
remains set until software writes a 1 to this location.

0 = The bridge has not delayed a Split Request.
1 = The bridge has delayed a Split Request.

8-6 Secondary Clock Frequency. (read-only)
This register enables configuration software to determine to what mode and
(in PCI-X mode) what frequency the bridge set the secondary bus the last
time secondary RST# was asserted. This is the same information the
bridge used to create the PCI-X initialization pattern on the secondary bus
the last time secondary RST# was asserted.

Max Clock Minimum Clock
Reg Frequency (MHz) (ref) Period (ns)
0 conventional mode N/A
1 66 15
2 100 10
3 133 7.5
4 reserved reserved
5 reserved reserved
6 reserved reserved
7 reserved reserved

An equivalent feature is required for host bridges.
15-9 Reserved

Revision 1.0b

191

8.6.2.4. PCI-X Bridge Status Register

This register identifies the capabilities and current operating mode of the bridge on its
primary bus as listed in the following table.

Table 8-5: PCI-X Bridge Status Register

Bit
Location

Description

2-0 Function Number. (read-only)
This register is read for diagnostic purposes only. It indicates the number of
this function; i.e., the number in the Function Number field (AD[10::08]) of
the address of a Type 0 configuration transaction to which this bridge
responds.

The bridge uses the Bus Number, Device Number, and Function Number
fields to create the Completer ID when responding with a Split Completion
to a read of an internal bridge register. These fields are also used for cases
when one interface is in conventional mode and the other is in PCI-X mode
(see Sections 8.4.3.1.3 and 8.4.3.2.3).

7-3 Device Number. (read-only)
This register is read for diagnostic purposes only. It indicates the number of
this device; i.e., the number in the Device Number field (AD[15::11]) of the
address of a Type 0 configuration transaction that is assigned to this bridge
by the connection of the system hardware. The bridge uses this number as
described for the Function Number field above.

Each time the bridge is addressed by a Configuration Write transaction, the
bridge must update this register with the contents of AD[15::11] of the
address phase of the Configuration Write, regardless of which register in the
bridge is addressed by the transaction. The bridge is addressed by a
Configuration Write transaction if all of the following are true:
1. The transaction uses a Configuration Write command.
2. IDSEL is asserted during the address phase.
3. AD[1::0] are 00b (Type 0 configuration transaction).
4. AD[10::08] of the configuration address contain the appropriate function

number.

State after RST# is 1Fh.
15-8 Bus Number. (read-only)

This register is read for diagnostic purposes only. It is an additional address
from which the contents of the Primary Bus Number register in the Type 01h
Configuration Space header is read. The bridge uses this number as
described for the Function Number field above.

Revision 1.0b

192

Bit
Location

Description

16 64-bit Device. (read-only)
This bit is used by system management software to assist the user in
identifying the best slot for an add-in card. If the bridge is part of a device
that is installed on an add-in card and connects directly to the PCI connector
(not through another bridge), this bit is set if and only if all of the following
are true:

1. The bridge function implements a 64-bit AD interface on its primary
side.

2. The device implements a 64-bit AD interface on its primary side.
3. The add-in card implements a 64-bit PCI connector. This requirement is

independent of the width of the slot in which the card is installed.

If the bridge is subordinate to another bridge on an add-in card, or if the
bridge is installed on the system board (not in a slot), this bit is permitted to
have any value.

0 = The bus is 32 bits wide.
1 = The bus is 64 bits wide.

17 133 MHz Capable. (read-only)
This bit is used by system management software to assist the user in
identifying the best slot for an add-in card. It is also used in some hot-plug
systems to determine whether an add-in card would function properly if the
bus were changed to PCI-X 133 mode.

If the bridge is installed on an add-in card and connects directly to the PCI
connector (not through another bridge), this bit indicates whether the
bridge’s primary interface is capable of 133 MHz operation in PCI-X mode.
The connection of the card’s PCIXCAP pin (see Section 6.2) must be
consistent with this bit.

If the bridge is subordinate to another bridge on an add-in card, or if the
bridge is installed on the system board (not in a slot), this bit is permitted to
have any value.

All functions within a multi-function device have the same value for this bit.
0 = The maximum operating frequency is 66 MHz.
1 = The maximum operating frequency is 133 MHz.

18 Split Completion Discarded. (write 1 to clear)
This bit is set if the bridge discards a Split Completion because the
requester on the primary bus would not accept it. See Sections 8.7.1.5 and
8.7.1.6 for details. Once set, this bit remains set until software writes a 1 to
this location. State after RST# is 0.

0 = No Split Completion has been discarded.
1 = A Split Completion has been discarded.

19 Unexpected Split Completion. (write 1 to clear)
This bit is set if an unexpected Split Completion with a Requester ID equal
to the bridge’s primary bus number, device number, and function number is
received on the bridge’s primary bus. See Section 5.4.5 for more details.
Once set, this bit remains set until software writes a 1 to this location. State
after RST# is 0.

0 = No unexpected Split Completion has been received.
1 = An unexpected Split Completion has been received.

Revision 1.0b

193

Bit
Location

Description

20 Split Completion Overrun. (write 1 to clear)
This bit is set if the bridge terminates a Split Completion on the primary bus
with Retry or Disconnect at Next ADB because the bridge buffers are full. It
is used by algorithms that optimize the setting of the upstream Split
Transaction Commitment Limit register. See Sections 8.4.2.1 and 13.2 for
more details.

The bridge is also permitted to set this bit in other situations that indicate
that the bridge commitment limit is too high. For example, if the bridge
stores immediate completion data in the same buffer area as Split
Completion data, the completer executes the transaction as an Immediate
Transaction, and the bridge disconnects the transaction because the buffers
became full.

Once set, this bit remains set until software writes a 1 to this location. State
after RST# is 0.

0 = The bridge has accepted all Split Completions.
1 = The bridge has terminated a Split Completion with Retry or

Disconnect at Next ADB because the bridge buffers were full.
21 Split Request Delayed. (write 1 to clear)

This bit is set any time the bridge has a request to forward a transaction on
the primary bus but cannot because there is not enough room within the
limit specified in the Split Transaction Commitment Limit field in the
Upstream Split Transaction Control register. It is used by algorithms that
optimize the setting of the upstream Split Transaction Commitment Limit
register. See Sections 8.4.2.1 and 13.2 for more details. Once set, the bit
remains set until software writes a 1 to this location.

0 = The bridge has not delayed a Split Request.
1 = The bridge has delayed a Split Request.

31-22 Reserved

Implementation Note: The Primary Bus Number and PCI-X Bus
Number Registers

A PCI-X bridge’s primary bus number is initialized in one location but can be read from
two. The value is initialized in the Primary Bus Number in the standard Type 01h
Configuration Space header and can be read both there and in the PCI-X Capabilities List
item in the Bus Number register. The second “read-only” location is provided to keep the
programming model of the PCI-X Bridge Status register consistent with the PCI-X Status
register for other PCI-X devices.

Revision 1.0b

194

8.6.2.5. Upstream Split Transaction Register

This register controls behavior of the bridge buffers for forwarding Split Transactions
from a secondary bus requester to a primary bus completer.

Table 8-6: Upstream Split Transaction Register

Bit
Location

Description

15-0 Split Transaction Capacity. (read-only)
Some bridges store Split Completions for memory reads in a separate buffer
from Split Completions for I/O and configuration reads and writes. For such
bridges, this register indicates the size of the buffer (in number of ADQs) for
storing Split Completions for memory reads for requesters on the secondary
bus addressing completers on the primary bus. If the bridge stores Split
Read Completions in the same buffer as other Split Completions, this
register indicates the size of this buffer in units of ADQs.

31-16 Split Transaction Commitment Limit. (read-write)
Some bridges store Split Completions for memory reads in a separate buffer
from Split Completions for I/O and configuration reads and writes. For such
a bridge, this register indicates the cumulative Sequence size for all memory
read transactions forwarded by the bridge from requesters on the secondary
bus addressing completers on the primary bus. (See Section 8.4.2.1 for a
detailed discussion of Split Transaction commitment.) If the bridge stores
Split Read Completions in the same buffer as other Split Completions, this
register indicates the size of all upstream Split Transactions of these types
that the bridge is permitted to commit to at one time.

This register indicates the size of the commitment limit in units of ADQs.

Software is permitted to program this register to any value greater than or
equal to the contents of the Split Transaction Capacity register. A value
less than the contents of the Split Transaction Capacity register causes
unspecified results. If this register is set to FFFFh, the bridge is permitted to
forward all Split Request of any size regardless of the amount of buffer
space available.

Software is permitted to change this register at any time. The most recent
value of the register is used each time the bridge forwards a Split
Transaction.

If the register value is set to FFFFh, the bridge does not track the
outstanding commitment. If the register is later set to something else, the
bridge does not accurately track outstanding commitments until all
outstanding commitments complete. Systems that require accurate
limitation of Split Transactions must never set this register to FFFFh, or they
must quiesce all devices that initiate traffic that crosses the bridge in this
direction after the register setting is changed from FFFFh.

An algorithm for setting this register is not specified. System software is
permitted to use any method for selecting the value for this register.
Individual devices and device drivers are not permitted to change the value
of this register except under control of a system-level configuration routine.
See Section 13.2 for more details and setting recommendations.
State after RST# is the same as the Split Transaction Capacity register.

Revision 1.0b

195

8.6.2.6. Downstream Split Transaction Register

This register controls behavior of the bridge buffers for forwarding Split Transactions
from a primary bus requester to a secondary bus completer.

Table 8-7: Downstream Split Transaction Register

Bit
Location

Description

15-0 Split Transaction Capacity. (read-only)
Some bridges store Split Completions for memory reads in a separate buffer
from Split Completions for I/O and configuration reads and writes. For such
a bridge, this register indicates the size of the buffer (in number of ADQs)
for storing Split Completions for memory reads for requesters on the primary
bus addressing completers on the secondary bus. If the bridge stores Split
Read Completions in the same buffer as other Split Completions, this
register indicates the size of this buffer in units of ADQs.

31-16 Split Transaction Commitment Limit. (read-write)
Some bridges store Split Completions for memory reads in a separate buffer
from Split Completions for I/O and configuration reads and writes. For such
bridges, this register indicates the cumulative Sequence size for all memory
read transactions forwarded by the bridge from requesters on the primary
bus addressing completers on the secondary bus. (See Section 8.4.2.1 for
a detailed discussion of Split Transaction commitment.) If the bridge stores
Split Read Completions in the same buffer as other Split Completions, this
register indicates the size of all downstream Split Transactions of these
types that the bridge is permitted to commit to at one time.

This register indicates the size of the commitment limit in units of ADQs.

Software is permitted to program this register to any value greater than or
equal to the contents of the Split Transaction Capacity register. A value
less than the contents of the Split Transaction Capacity register causes
unspecified results. If this register is set to FFFFh, the bridge is permitted to
forward all Split Request of any size regardless of the amount of buffer
space available.

Software is permitted to change this register at any time. The most recent
value of the register is used each time the bridge forwards a Split
Transaction.

If the register value is set to FFFFh, the bridge does not track the
outstanding commitment. If the register is later set to something else, the
bridge does not accurately track outstanding commitments until all
outstanding commitments complete. Systems that require accurate
limitation of Split Transactions must never set this register to FFFFh, or they
must quiesce all devices that initiate traffic that crosses the bridge in this
direction after the register setting is changed from FFFFh.

An algorithm for setting this register is not specified. System software is
permitted to use any method for selecting the value for this register.
Individual devices and device drivers are not permitted to change the value
of this register except under control of a system-level configuration routine.
See Section 13.2 for more details and setting recommendations.
State after RST# is the same as the Split Transaction Capacity register.

Revision 1.0b

196

8.7. PCI-X Bridge Error Support

Some of the PCI-X bridge error support requirements vary depending upon the mode
(PCI-X or conventional PCI) of the bridge’s interface on the side from which the
transaction originated. Requirements for these two cases are presented separately below.

The originating side of the bridge is the bridge interface that responds as a target to the
transaction. For Split Requests and memory writes, this is the side closest to the
requester. For Split Completions, this is the side closest to the completer. The
destination side is opposite the originating side.

If a PCI-X bridge detects a data parity error, in most cases, it forwards the transaction
with the error (the bridge drives AD, C/BE#, PAR64, and PAR on the destination bus
exactly as observed on the originating bus, including the parity error, for each data
phase). This enables the error to be returned to the requester so the requester can attempt
to recover or report the error to the system. In the following discussion, the phrase
“drives bad parity” is used to describe this case.

8.7.1. PCI-X Originating Bus

This section describes the bridge error support requirements for transaction that cross the
bridge if the originating side of the bridge is operating in PCI-X mode (regardless of the
mode of the other side of the bridge).

8.7.1.1. Data Parity Error on an Immediate Read

If the bridge detects a data parity error on the destination bus while forwarding a read
transaction that the completer completes immediately, the bridge sets the appropriate
error status bits and asserts PERR# as described in Section 5.2 for that interface. When
the bridge creates the Split Completion and returns it to the requester, the bridge drives
bad parity. The read data parity error does not affect the bridge’s behavior in any other
way. After a data parity error on the destination bus for an immediate read transaction,
the bridge continues to fetch data until the byte count is satisfied or the target on the
destination bus ends the Sequence in some other way.

8.7.1.2. Data Parity Error on a Non-Posted Write

If the bridge detects a data parity error on the originating bus for a non-posted write
transaction that crosses the bridge, the bridge asserts PERR# and sets the appropriate
error status bits as described in Section 5.4.1 for that interface. The bridge optionally
signals either Data Transfer or Split Response for this transaction. If the bridge signals
Data Transfer, the bridge discards the transaction and does not forward it. If the bridge
signals Split Response, the bridge forwards the transaction and drives bad parity. The
bridge must not signal Retry or Target-Abort solely because of a data parity error.

Revision 1.0b

197

Implementation Note: Discarding or Forwarding a Non-Posted Write
with a Data Parity Error

If a non-posted write transaction has a parity error on the originating bus, the bridge is
allowed to terminate it with Data Transfer and to discard the transaction for consistency
with conventional PCI bridges (which discard non-posted write transactions with data
parity errors). However, implementing this option requires the bridge to delay the
signaling of Split Response for all non-posted write transactions until write data parity is
sampled and checked.

Signaling Split Response before write data parity is checked allows the bridge to respond
sooner on all non-posted write transactions. However, once the bridge signals Split
Response, it must forward the transaction.

If the bridge observes PERR# asserted on the destination bus while forwarding a non-
posted write transaction, the bridge sets the appropriate error status bits as described in
Section 5.4.1 for that interface. If the target completes the transaction immediately (i.e.,
signals Data Transfer, Single Data Phase Disconnect, or Disconnect at Next ADB), the
bridge generates the appropriate Split Completion Message (see Section 8.8) to report the
error to the requester. If the target signals Split Response, the bridge terminates the
transaction as it would for a Split Request that did not have an error and takes no further
action. (When the Split Completion returns, the bridge forwards it normally.)

8.7.1.3. Data Parity Error on a Split Completion

If the bridge detects a data parity error on the originating bus for a Split Completion other
than a Split Completion Message, the bridge asserts PERR# and sets the appropriate
error status bits as described in Section 5.4.1 for that interface. The bridge then drives
bad parity when it forwards the Split Completion. The bridge takes no other action on
that data parity error.

If the bridge detects a data parity error on the originating bus for a Split Completion
Message, it asserts SERR# (if enabled) and discards the transaction.

If the bridge observes PERR# asserted on the destination bus while forwarding a Split
Completion, the bridge sets the appropriate error status bits as described in Section 5.4.1
for that interface. The bridge takes no other action on that data parity error.

The bridge forwards Split Completion Messages without decoding the message. The
bridge forwards Split Completion Messages the same way regardless of whether they
indicate normal completion or that some other device detected an error.

8.7.1.4. Data Parity Error on a Posted Write

PCI-X bridge behavior for parity errors on posted write transactions is the same as for
conventional PCI bridges. If the bridge detects a data parity error on the originating bus
for a posted write transaction that crosses the bridge, the bridge asserts PERR# and sets
the appropriate error status bits as described in Section 5.4.1 for that interface. The
bridge then forwards the posted write transaction and drives bad parity. The bridge takes
no other action on that data parity error. If the bridge observes PERR# asserted on the
destination bus for this transaction, the bridge sets the appropriate error status bits as
described in Section 5.4.1 for that interface and takes no further action for this error.

Revision 1.0b

198

If the bridge observes PERR# asserted on the destination bus for a posted write
transaction that was error-free on the originating bus, the bridge sets the appropriate error
status bits as described in Section 5.4.1 for that interface and asserts SERR# (if enabled).

8.7.1.5. Master-Abort

As in conventional PCI, the requirements for a PCI-X bridge that encounters a Master-
Abort when forwarding a transaction vary depending on the state of the Master-Abort
Mode bit in the Bridge Control register and the type of transaction. As described below,
PCI-X bridge requirements differ from conventional bridges in that error conditions that
require conventional bridges to signal Target-Abort in most cases require PCI-X bridges
to send a Split Completion Message. Furthermore, PCI-X bridge requirements are the
same for exclusive and non-exclusive accesses.

If the bridge encounters a Master-Abort on the destination bus for any transaction except
memory writes and Split Completions, the bridge sets the appropriate Received Master-
Abort status bit (as specified in Bridge 1.1) and creates a Split Completion Message. The
Split Completion address and Completer Attributes are created as described for
immediate completion in Section 8.4.2.2. The Split Completion Message is created as
described in Section 2.10.6 with the PCI-X Bridge Error class code and Master-Abort
error message index as described in Section 8.8. If the transaction terminated with
Master-Abort is a DWORD transaction, the error Split Completion Message replaces the
normal Split Completion for this transaction. The bridge’s behavior in such cases is
independent of the state of the Master-Abort Mode bit.

Implementation Note: Read Data Values after a Master-Abort
Condition

Some system configuration software depends on reading a data value of FFFF FFFFh
when Configuration Read transactions encounter a Master-Abort condition. A PCI-X
bridge is required by the preceding paragraph to generate a Split Completion Message
when any non-posted transaction (including Configuration Read) ends in Master-Abort.
Host bridges intended for use with software that depends on a read-data value of
FFFF FFFFh after a Master-Abort must decode Split Completion Messages that are
PCI-X Bridge class and Master-Abort error index and create the appropriate read-data
pattern for the software.

The requirements for PCI-X bridges that encounter Master-Abort conditions on memory
write transactions are the same as for conventional PCI bridges (as described in
Bridge 1.1). If the bridge encounters a Master-Abort on the destination bus for a posted
write transaction, the bridge sets the appropriate Received Master-Abort status bit. The
bridge disconnects the transaction as soon as possible on the originating side, if it is still
in progress (generally the next ADB, see Section 2.11.2), and discards the entire
transaction. If the Master-Abort Mode bit is cleared, the bridge takes no further action on
the error. If the Master-Abort Mode bit is set, the bridge asserts SERR# (if enabled) on
the primary interface.

If the bridge initiates a Split Completion transaction on the primary bus and encounters a
Master-Abort, the bridge sets the Received Master-Abort bit in the Status register (as
specified in Bridge 1.1) and the Split Completion Discarded bit in the PCI-X Bridge
Status register (as specified in Section 8.6.2.4). If the bridge initiates a Split Completion
transaction on the secondary bus and encounters a Master-Abort, the bridge sets the
Received Master-Abort status bit in the Secondary Status register (as specified in
Bridge 1.1) and the Split Completion Discarded bit in the PCI-X Secondary Status
register (as specified in Section 8.6.2.3). In both cases, the bridge discards the entire

Revision 1.0b

199

transaction and asserts SERR# (if enabled) on the primary interface independent of the
state of the Master-Abort Mode bit.

8.7.1.6. Target-Abort

PCI-X bridges signal Target-Abort only if the bridge asserts DEVSEL# to claim a
transaction but error conditions prevent the bridge from signaling any other termination,
for example, a parity error in the address phase. As in conventional PCI, the bridge sets
the appropriate status bits.

If the bridge encounters a Target-Abort on the destination bus for any transaction except
memory writes and Split Completions, the bridge sets the appropriate Received Target-
Abort status bit (as specified in Bridge 1.1) and creates a Split Completion Message. The
Split Completion address and attributes are created as described for immediate
completion in Section 8.4.2.2. The Split Completion Message is created as described in
Section 2.10.6 with the PCI-X Bridge Error class code and Target-Abort error message
index as described in Section 8.8. If the transaction was a DWORD transaction, the error
Split Completion Message replaces the normal Split Completion for this transaction. If
the transaction was a burst, the bridge is permitted to send the error Split Completion
Message in lieu of the first Split Completion for this Sequence or any continuation of the
Sequence after a disconnection on an ADB. (Unlike conventional PCI, there is no way
for a PCI-X bridge to indicate on which data phase the Target-Abort occurred.)

The requirements for PCI-X bridges that encounter Target-Abort conditions on memory
write transactions are the same as for conventional PCI bridges (as described in
Bridge 1.1). If the bridge encounters a Target-Abort on the destination bus for a posted
write transaction, the bridge sets the appropriate Received Target-Abort status bit. The
bridge disconnects the transaction as soon as possible on the originating side, if it is still
in progress (generally the next ADB, see Section 2.11.2), and discards the entire
transaction. The bridge asserts SERR# (if enabled) on the primary interface.

If the bridge initiates a Split Completion transaction on the primary bus and encounters a
Target-Abort, the bridge sets the Received Target-Abort bit in the Status register (as
specified in Bridge 1.1) and the Split Completion Discarded bit in the PCI-X Bridge
Status register (as specified in Section 8.6.2.4). If the bridge initiates a Split Completion
transaction on the secondary bus and encounters a Target-Abort, the bridge sets the
Received Target-Abort status bit in the Secondary Status register (as specified in
Bridge 1.1) and the Split Completion Discarded bit in the PCI-X Secondary Status
register (as specified in Section 8.6.2.3). In both cases, the bridge discards the entire
transaction and asserts SERR# (if enabled) on the primary interface.

Implementation Note: Asserting SERR# after a Master-Abort or
Target-Abort for a Split Completion

A properly functioning requester in a properly functioning system takes all the data
indicated by the byte count of the original Split Request without signaling Target-Abort
or allowing a Master-Abort. A Master-Abort or Target-Abort termination of a Split
Completion indicates the existence of a serious problem in the system. Such problems
can lead to Split Completions from one requester appearing to match outstanding Split
Requests from another requester. The bridge must assert SERR# in this case to prevent
or limit further data corruption in the system.

Revision 1.0b

200

8.7.2. Conventional PCI Originating Bus

If the originating bus is in conventional PCI mode, PCI -X bridge requirements are the
same as described in Bridge 1.1 in all cases except errors that occur in the PCI-X
environment and are reported to the bridge in the form of a Split Completion Message.

If the PCI-X bridge forwards a read transaction from a conventional interface to a PCI-X
interface and the transaction completes with a Split Completion Message, the bridge
completes the transaction normally on the conventional interface and returns read-data of
FFFF FFFFh if all of the following are true:

• The Split Completion Message indicates a Master-Abort condition (i.e., PCI-X
Bridge class and Master-Abort error index).

• The Master-Abort Mode bit in the Bridge Control register is cleared.

• The read transaction is non-exclusive.

For all other cases in which a read transaction completes with a Split Completion
Message, the bridge terminates the transaction on the conventional interface with Target-
Abort.

If the PCI-X bridge forwards a non-posted write transaction from a conventional interface
to a PCI-X interface and the transaction completes with a Split Completion Message, the
bridge completes the transaction normally on the conventional interface in the following
two cases:

• The transaction completes with a Split Completion Message that indicates Normal
Completion (i.e., Write Completion class and Normal Completion index).

• The transaction completes with a Split Completion Message that indicates Master-
Abort (i.e., PCI-X Bridge class and Master-Abort error index), and the Master-Abort
Mode bit in the Bridge Control register is cleared, and the write transaction is non-
exclusive.

If the Split Completion Message indicates the occurrence of a write-data parity error (i.e.,
PCI-X Bridge class and Write Data Parity Error index), the bridge asserts PERR# and
sets the appropriate bits in the Status register when the transaction completes on the
conventional interface. For all other cases in which a non-posted write transaction
completes with a Split Completion Message, the bridge terminates the transaction on the
conventional interface with Target-Abort.

8.8. PCI-X Bridge Error Class Split Completion Message

If a PCI-X bridge forwards a Split Transaction and encounters an error on the destination
bus that ends the Sequence, the bridge generates a Split Completion Message with the
PCI-X Bridge Error class code (1h) and returns it to the requester in lieu of a normal Split
Completion transaction.

The PCI-X Bridge Error class is used by bridges between two PCI buses operating either
in PCI-X or conventional mode. Bridges to other buses must not use this message class.

Such error conditions are special cases of Immediate Transactions discussed in
Section 8.4.2.2. The rules for creating the Split Completion address and Completer
Attributes are described in that section for the case in which the error occurred on a bus
segment operating in PCI-X mode. Refer to Section 8.4.3.2.3 for the case in which the
error occurred on a conventional bus segment. The Lower Address field in the Split

Revision 1.0b

201

Completion address is always set to zero and the Byte Count field in the Completer
Attributes is always set to four for a Split Completion Message.

The format of the Split Completion Message is specified in Section 2.10.6. The Message
Class is 1. The Remaining Byte Count field in the data phase of this Split Completion
Message is the number of bytes remaining in this Sequence. (If the bridge has already
received some data as an immediate response to previous transactions in the same
Sequence, the byte count of the transaction that encountered the error is less than the
original request.) The bridge sets all reserved bits in the Split Completion Message to 0.

Table 8-8 shows the index values defined for this message class. All other indexes are
reserved.

Table 8-8: PCI-X Bridge Error Messages Indices (Class 1)

Index Message
00h Master-Abort.

The PCI-X bridge encountered a Master-Abort on the destination
bus. (See Section 8.7.1.5.)

01h Target-Abort.
The PCI-X bridge encountered a Target-Abort on the destination bus.
(See Section 8.7.1.6.)

02h Write Data Parity Error.
The PCI-X bridge encountered a data parity error on a non-posted
write transaction on the destination bus. (See Section 8.7.1.2.)

8.9. Secondary Bus Mode and Frequency Initialization
Sequence

A PCI-X bridge places its secondary bus in PCI-X mode based on the capabilities of the
devices connected there, independent of the mode of the primary bus. If only one side of
a bridge is operating in PCI-X mode, the bridge must translate the protocol between the
two buses as described in Section 8.4.3.

This section describes the clock on the secondary bus as if it were generated inside the
bridge. Such discussion is not intended to preclude other alternatives such as having the
clock generated by a component separate from the bridge.

As in conventional PCI, if primary RST# is asserted into a PCI-X bridge, the bridge must
clear all of its internal state machines, assert its secondaryRST#, float the secondary bus
control signals (including the ones in the PCI-X initialization pattern), and park the
secondary AD and C/BE# buses in the low logic-level state. At the rising edge of
primary RST#, a PCI-X bridge latches the frequency and mode of its primary bus. It
must then initialize the secondary bus as follows. (Note that for most bridges, the
initialization of the secondary clock must wait for the rising edge of primary RST# to
capture the proper frequency range of the primary clock. Bridges that generate secondary
clock independent of primary clock are permitted to perform some of the following steps
prior to the rising edge of primary RST#.)

1. Sense the states of PCIXCAP and M66EN for all devices on the secondary bus. See
Section 14 for examples of methods for detecting the state of PCIXCAP.

2. Select the appropriate mode and clock frequency for the cards present on this bus as
described in Section 6.1.2. (The design of the bridge and the electrical length and
number of load on the bus determine the actual frequency at which the bus operates
in each mode.)

Revision 1.0b

202

3. If the mode is to be 33 MHz conventional PCI, deassert M66EN for all devices on
the secondary bus. (This requirement is automatically met if M66EN is bused for all
devices on the secondary bus.)

4. Assert the appropriate signals for the PCI-X initialization pattern (from Table 6-2) on
the secondary bus. Leave the others floating so the pull-up resistors deassert them.
(The bridge must not actively deassert the bus control signals while RST# is
deasserted, because one of the power supply voltages could be out of range.) The
timing requirements for this pattern are shown in Section 9.6.

5. Deassert secondary RST# to place all devices on the secondary bus in the
appropriate mode.

The bridge must generally wait for its clock divider/multiplier and internal PLL to
stabilize before the secondary clock is stable. In some implementations, this increases
the delay between the time primary RST# deasserts and the time the bridge deasserts its
secondary RST#. In all cases, the bridge must guarantee that secondary RST# does not
deassert until after the secondary clock is stable at the proper frequency for the length of
time specified in Table 9-5.

The PCI-X bridge is also required to apply the PCI-X initialization pattern with the same
timing requirement any other time RST# deasserts on this bus; e.g., if software sets and
clears the Secondary Bus Reset bit in the Bridge Control register specified in Bridge 1.1.

Revision 1.0b

203

9. Electrical Specification

9.1. DC Specifications

The following table shows the DC specifications for devices operating in PCI-X mode.
Conventional 3.3V signaling DC specifications are included for reference.

Table 9-1: DC Specifications for PCI-X Devices

PCI-X 3.3V
Conventional

PCI (ref)
Sym Parameter Condition Min Max Min Max Units Notes
Vcc Supply

Voltage
3.0 3.6 3.0 3.6 V

Vih Input High
Voltage

0.5Vcc Vcc + 0.5 0.5Vcc Vcc + 0.5 V

Vil Input Low
Voltage

-0.5 0.35Vcc -0.5 0.3Vcc V

Vipu Input Pull-up
Voltage

0.7Vcc 0.7Vcc V 1

Iil Input
Leakage
Current

0 < Vin < Vcc +10 +10 µA 2

Voh Output High
Voltage

Iout = -500 µA 0.9Vcc 0.9Vcc V

Vol Output Low
Voltage

Iout = 1500 µA 0.1Vcc 0.1Vcc V

Cin Input Pin
Capacitance

8 10 pF 3

Cclk CLK Pin
Capacitance

5 8 5 12 pF

CIDSEL IDSEL Pin
Capacitance

8 8 pF 4

Lpin Pin
Inductance

15 20 nH 5

IOff PME# input
leakage

Vo ≤ 3.6 V

Vcc off or

floating

– 1 – 1 µA 6

Notes:
1. This specification should be guaranteed by design. It is the minimum voltage to which pull-up resistors are

calculated to pull a floated network. Applications sensitive to static power utilization must assure that the
input buffer is conducting minimum current at this input voltage.

2. Input leakage currents include hi-Z output leakage for all bi-directional buffers with tri-state outputs.
3. Absolute maximum pin capacitance for a PCI/PCI-X input except CLK and IDSEL.
4. For conventional PCI only, lower capacitance on this input-only pin allows for non-resistive coupling to

AD[xx]. PCI-X configuration transactions drive the AD bus four clocks before FRAME# asserts (see
Section 2.7.2.1).

5. For conventional PCI, this is a recommendation not an absolute requirement. For PCI-X, this is a
requirement.

6. This input leakage is the maximum allowable leakage into the PME# open drain driver when power is
removed from Vcc of the component. This assumes that no event has occurred to cause the device to

attempt to assert PME#.

Revision 1.0b

204

9.2. AC Specifications

The output drive characteristics for devices operating in PCI-X mode over the full range
of output voltages are shown Table 9-2 and Table 9-3. Conventional PCI 66 MHz values
are included for reference. For clarity, AC output characteristic equations define lines
that pass through the origin. Actual device requirements when the output voltage is
above Voh or below Vol are specified in the DC characteristics (Table 9-1). As in

conventional PCI, the DC characteristics are the only conditions under which steady-state
operation is intended. The higher current portions of the AC characteristics are intended
to be reached only during switching transients.

Table 9-2: AC Specifications

Symbol Parameter Condition Min Max Unit Note

PCI-X
Output Buffer Drive Currents

0 < Vcc-Vout ≤ 3.6V -74(Vcc-Vout) mA
0 < Vcc-Vout ≤ 1.2V -32 (Vcc-Vout) mA 1
1.2V < Vcc-Vout
≤ 1.9V

-11 (Vcc-Vout) -25.2 mA 1

Ioh(AC) Switching
Current
High

1.9V < Vcc-Vout
≤ 3.6V

-1.8 (Vcc-Vout) -42.7 mA 1

0 ≤ Vout ≤ 3.6V 100Vout mA
0 < Vout ≤ 1.3V 48 Vout mA 1

Iol(AC) Switching
Current Low

1.3V < Vout ≤ 3.6V 5.7 Vout + 55 mA 1

Clamp Currents
-3V < Vin ≤ -0.8875V -40 + (Vin+1) / 0.005 mAIcl Low Clamp

Current -0.8875V < Vin
≤-0.625V

-25 + (Vin+1) / 0.015 mA

0.8875V ≤ Vin-Vcc
< 4V

40 + (Vin-Vcc-1)

/ 0.005

mAIch High Clamp
Current

0.625V ≤ Vin-Vcc
< 0.8875V

25 + (Vin-Vcc-1)

/ 0.015

mA

66 MHz Conventional PCI (ref)
AC Drive Points

Vout = 0.7Vcc -32Vcc mAIoh(AC) Switching
Current High Vout = 0.3Vcc -12Vcc mA

Vout = 0.18Vcc 38Vcc mAIol(AC) Switching
Current Low Vout = 0.6Vcc 16Vcc mA

Clamp Currents
Ich High clamp

current

Vcc+4 > Vin ≥ Vcc+1 25 + (Vin-Vcc-1)

/ 0.015

mA

Icl Low clamp
current

-3 < Vin ≤ -1 -25 + (Vin+1) / 0.015 mA

Note:
1. In conventional PCI switching, current characteristics for REQ# and GNT# are permitted to be one half of

that specified here; i.e., half size drivers may be used on these signals. In PCI-X devices, REQ# and
GNT# must have full-size drivers. This specification does not apply to CLK and RST# which are system
outputs. "Switching Current High" specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and
INTD#, which are open drain outputs.

Revision 1.0b

205

Table 9-3: Output Slew Rates

PCI-X
Conventional
PCI 66 (ref)

Symbol Parameter Condition Min Max Min Max Units Note
tr Output rise

slew rate

0.3Vcc to 0.6Vcc 1 6 1 4 V/ns 1

tf Output fall
slew rate

0.6Vcc to 0.3Vcc 1 6 1 4 V/ns 1

Note:
1. This parameter is to be interpreted as the cumulative edge rate across the specified range rather than the

instantaneous rate at any point within the transition range. The test load is specified in Figure 9-11
(66 MHz reference values use the test load in Figure 9-10). The specified load is optional. The designer
may elect to meet this parameter with an unloaded output per revision 2.0 of the PCI specification.
However, adherence to both maximum and minimum parameters is required (the maximum is not simply a
guideline). Rise slew rate does not apply to open drain outputs.

Output drive current limits from Table 9-2 are illustrated in Figure 9-1 and Figure 9-2.
Conventional PCI 33 MHz 3.3V limits are included for reference.

-30 0

-25 0

-20 0

-15 0

-10 0

-50

0

Vcc - Vout (volt)

Io
h

(m
A

) PCI-X

PCI

0 1 1 .5 2 2 .5 3 3 .5 40 .5

Figure 9-1: PCI-X Pull-Up Output Buffer I/V Curves

Revision 1.0b

206

0

50

10 0

15 0

20 0

25 0

30 0

35 0

40 0

0 1 2 3 4
Vout (volt)

Io
l(

m
A

)

PC I-X

PCI

Figure 9-2: PCI-X Pull-Down Output Buffer I/V Curves

Figure 9-3 and Figure 9-4 are reference information showing the same output drive
characteristics as Figure 9-1 and Figure 9-2 with the axes the same as PCI 2.2.

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

0 -2 0 -4 0 -6 0 -8 0 -1 00

Iout (m A)

V
o

u
t(

vo
lt

)

V cc V cc V cc V cc V cc

V cc x

PCI-X

PCI

Figure 9-3: PCI-X Pull-Up Output Buffer V/I Curves (ref)

Revision 1.0b

207

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

0 20 40 60 80 100

Iout (mA)

V
o

u
t

(v
o

lt
)

V cc V cc V cc V cc V cc

V cc x

PCI-X

PCI

Figure 9-4: PCI-X Pull-Down Output Buffer V/I Curves (ref)

9.3. Maximum AC Ratings and Device Protection

Maximum AC rating and device protection requirements are the same for PCI-X devices
as for conventional PCI devices in a 3.3 V signaling environment.

9.4. Timing Specification

9.4.1. Clock Specification

Clock measurement conditions are the same for PCI-X devices as for conventional PCI
devices in a 3.3 V signaling environment except for voltage levels specified in Table 9-1.

In the case of add-in cards, compliance with the clock specification is measured at the
add-in card component not at the connector. As with conventional PCI, devices used
behind a PCI-to-PCI bridge on an add-in card use the clock output specification of the
selected bridge rather than the specification shown here. Some PCI-to-PCI bridges have
different clock output specifications.

The same spread-spectrum clocking techniques are allowed in PCI-X as for 66 MHz
conventional PCI. If a device includes a PLL, that PLL must track the input variations of
spread-spectrum clocking specified in Table 9-4.

Tcyc in Table 9-4 indicates the minimum and maximum CLK cycle times for the various

specified frequencies. The minimum and maximum clock period specifications must not
be violated for any single clock cycle. System designers must assure that the system
clock period, including all sources of clock period variation (e.g., tolerance and jitter), is
always within the minimum and maximum defined ranges. For example, if a specific
system clock design has a maximum clock period variation of 180 ps, the maximum that
the nominal frequency can be set for such a clock for 133 MHz operation, is

1/(7.5 ns + 0.18 ns) = 130.208 MHz.

Revision 1.0b

208

This setting of the nominal frequency accounts for the clock period variation without
violating the minimum clock period of 7.5 ns.

0.4
V

cc
peak

to
peak

(m
inim

um
)

Tlow

Thigh

Tcyc

Vih(min)

Vtest

Vil(max)

3.3 volt Clock 0.6 Vcc

0.2 Vcc

Figure 9-5: 3.3V Clock Waveform

Table 9-4: Clock Specifications

PCI-X 133 PCI-X 66 Conv PCI
66 (ref)

Conv PCI
33 (ref)

Sym Parameter Min Max Min Max Min Max Min Max Unit Notes
Tcyc CLK Cycle

Time
7.5 20 15 20 15 30 30 ∞ ns 1,3,4

Thigh CLK High
Time

3 6 6 11 ns

Tlow CLK Low
Time

3 6 6 11 ns

- CLK Slew
Rate

1.5 4 1.5 4 1.5 4 1 4 V/ns 2,4

Spread Spectrum Requirements
fmod modulation

frequency
30 33 30 33 30 33 kHz

fspread frequency
spread

-1 0 -1 0 -1 0 %

Notes:
1. For clock frequencies above 33 MHz, the clock frequency may not change beyond the spread-spectrum

limits except while RST# is asserted.
2. This slew rate must be met across the minimum peak-to-peak portion of the clock waveform as shown in

Figure 9-5.
3. The minimum clock period must not be violated for any single clock cycle, i.e., accounting for all system

jitter.
4. All PCI-X 133 devices must also be capable of operating in PCI-X 66. All PCI-X devices must be capable

of operating in conventional PCI 33 mode and optionally are capable of conventional PCI 66 mode.

Revision 1.0b

209

9.4.2. Timing Parameters

Table 9-5 shows the timing specifications for all signals other than the clock.

Table 9-5: General Timing Parameters

Symbol Parameter PCI-X 133 PCI-X 66 Conventional

PCI 66 (ref)

Conventional

PCI 33 (ref)

Min Max Min Max Min Max Min Max Units Notes
Tval CLK to Signal Valid Delay -

bused signals

0.7 3.8 0.7 3.8 2 6 2 11 ns 1, 2, 3,

10, 11
Tval(ptp) CLK to Signal Valid Delay -

point to point signals

0.7 3.8 0.7 3.8 2 6 2 12 ns 1, 2, 3,

10, 11
Ton Float to Active Delay 0 0 2 2 ns 1, 7,

10, 11
Toff Active to Float Delay 7 7 14 28 ns 1, 7, 11
Tsu Input Set up Time to CLK -

bused signals

1.2 1.7 3 7 ns 3, 4, 8

Tsu(ptp) Input Set up Time to CLK -

point to point signals

1.2 1.7 5 10,12 ns 3, 4

Th Input Hold Time from CLK 0.5 0.5 0 0 ns 4
Trst Reset Active Time 1 1 1 1 ms 5
Trst-clk Reset Active Time after CLK

stable

100 100 100 100 µs 5

Trst-off Reset Active to output float

delay

40 40 40 40 ns 5, 6

Trrsu REQ64# to RST# setup time 10 10 10 10 clocks
Trrh RST# to REQ64# hold time 0 50 0 50 0 50 0 50 ns 9
Trhfa RST# high to first

Configuration access

226 226 225 225 clocks

Trhff RST# high to first FRAME#

assertion

5 5 5 5 clocks

Tpvrh Power valid to RST# high 100 100 100 100 ms
Tprsu PCI-X initialization pattern to

RST# setup time

10 10 clocks

Tprh RST# to PCI-X initialization

pattern hold time

0 50 0 50 ns 9

Trlcx Delay from RST# low to CLK

frequency change

0 0 ns

Notes:
1. See the timing measurement conditions in Figure 9-6.
2. Minimum times are measured at the package pin (not the test point) with the load circuit shown in Figure 9-10.

Maximum times are measured with the test point and load circuit shown in Figure 9-8 and Figure 9-9.
3. Setup time for point-to-point signals applies to REQ# and GNT# only. All other signals are bused.
4. See the timing measurement conditions in Figure 9-7.
5. RST# is asserted and deasserted asynchronously with respect to CLK.
6. All output drivers must be floated when RST# is active.
7. For purposes of Active/Float timing measurements, the Hi-Z or “off” state is defined to be when the total current

delivered through the component pin is less than or equal to the leakage current specification.
8. Setup time applies only when the device is not driving the pin. Devices cannot drive and receive signals at the same

time.
9. Maximum value is also limited by delay to the first transaction (Trhff). The PCI-X initialization pattern control signals

and REQ64# after the rising edge of RST# must be deasserted no later than two clocks before the first FRAME# and
must be floated no later than one clock before FRAME# is asserted.

10. A PCI-X device is permitted to have the minimum values shown for Tval, Tval(ptp), and Ton only in PCI-X mode. In

conventional mode, the device must meet the requirements specified in PCI 2.2 for the appropriate clock frequency.
11. Device must meet this specification independent of how many outputs switch simultaneously.

Revision 1.0b

210

9.4.3. Measurement and Test Conditions

Timing measurement and test conditions are the same as for conventional PCI, except for
the output slew rate test load shown in Figure 9-11. Figure 9-6 shows the output
waveform measurement conditions. Figure 9-7 shows the input waveform measurement
conditions.

CLK

O UTPUT
DELAY

Tri-S tate
O UTPUT

O UTPUT
DELAY

V th

V tl

V test

T val (falling)

V tfall

T val (ris ing)

V trise

T o n

T o ff

Figure 9-6: Output Timing Measurement Conditions

INPUT
inputs
valid

CLK

V th

V tl

Vm ax
V test

T h
T su

V test

V th

V tl

V test

Figure 9-7: Input Timing Measurement Conditions

Revision 1.0b

211

Table 9-6: Measurement Condition Parameters

Symbol PCI-X 3.3V Signaling
Conventional
PCI 66(ref)

Units Notes

Vth 0.6Vcc 0.6Vcc V 1
Vtl 0.25Vcc 0.2Vcc V 1
Vtest 0.4Vcc 0.4Vcc V
Vtrise 0.285Vcc 0.285Vcc V 2
Vtfall 0.615Vcc 0.615Vcc V 2
Vmax 0.4Vcc 0.4Vcc V 1

Input Signal
Slew Rate

1.5 1.5 V/ns 3

Notes:
1. The test for the 3.3V environment is done with 0.1*V cc of overdrive. Vmax specifies the maximum

peak-to-peak waveform allowed for measuring input timing. Production testing is permitted to use
different voltage values but must correlate results back to these parameters.

2. Vtrise and Vtfall are reference voltages for timing measurements only.
3. Input signal slew rate in PCI-X mode is measured between Vil and Vih.

10 pF

1 /2 i n . m a x .

o utp ut
b uffer

pin
Tes t
P o in t

25 Ω

Figure 9-8: Tval(max) Rising Edge Test Load

10 pF

Vcc

1 /2 i n . m a x .
Tes t
P o in t

25 Ω

Figure 9-9: Tval(max) Falling Edge Test Load

1 k Ω
10 pF

output
buffer

pin 1 /2 i n . m a x .

Vcc

1 k Ω

T est
Po in t

Figure 9-10: Tval(min) Test Load

Revision 1.0b

212

1/2 in . m ax

output
buffer Vcc

pin

Test
Point

140 Ω 140Ω
10pF

Figure 9-11: Output Slew Rate Test Load

9.4.4. Device Internal Timing Examples

Figure 9-12 shows a typical PCI-X device implementation including wire-delay elements.
Table 9-7 and Table 9-8 show how the delay elements are combined to calculate Tval,

Tsu, and Th for this example device.

P C I
LO G IC

PC I Bu s
F2*

d

q W2A
W2B

F1*
d

q W1A
W1B

data_in

data_out

data_output_enable

F3*
d

q

P1

W3A

clo ck
dr iver P LL

P2

A

ZB

X

M1

M2

M3

bs_in_ 1

bs_in_ 2

bs_in_ 3

C

PC I C lo ck

Log ic G a tes

I/O B u ffe r

P ack age

oe

D

Y

A S IC In te rna l
C lock

D is tribu tion to
A, B , & C

CB2

IOB1

* -- A ll F lip F lops are assum ed to be ris ing edge trigge red

Figure 9-12: Device Internal Timing Example

For this example, the maximum value of Tval is determined by the slower of two paths,

the output enable path through flip-flop F1 and the data path through flip-flop F2.
Table 9-7 shows both calculations.

Revision 1.0b

213

Table 9-7: Tval Delay Paths

X to A to Z X to B to Z

Parameter Description Parameter Description

P2 Clock Input Package Delay P2 Clock Input Package Delay

CB2 Clock Input Buffer Delay CB2 Clock Input Buffer Delay

PLL PLL Jitter/Phase Error/Clock Wire
Delay

PLL PLL Jitter/Phase Error/Clock Wire
Delay

F1 Flop-1 Clock to Q Delay F2 Flop-2 Clock to Q Delay

W1A Wire Delay W2A Wire Delay

M1 Mux-1 Delay M2 Mux-2 Delay

W1B Wire Delay W2B Wire Delay

IOB1(oe_) I/O Buffer Turn On Delay IOB1(output) I/O Buffer Output Delay

P1 Output Signal Package Delay P1 Output Signal Package Delay

Sum is X A Z delay Sum is X B Z delay

Tsu and Th are calculated with the following equations:

Tsu = F3su + (Z Y)max – (X C)min

Th = F3hold – (Z Y)min + (X C)max

where:

F3su is the setup time for flip-flop F3.

F3hold is the hold time for flip-flop F3.

(Z Y) is the delay from point Z to point Y in Figure 9-12 as shown in Table 9-8,
and

(X C) is the delay from point X to point C in Figure 9-12 as shown in Table 9-8.

Table 9-8: Tsu and Th Delay Paths

Z to Y X to C

Parameter Description Parameter Description

P1 Package Delay P2 Package Delay

IOB1(Input) I/O Buffer Input Delay CB2 Clock Input Buffer Delay

W3A Wire Delay PLL PLL Jitter/Phase error/Clock
Wire Delay

Sum is Z Y delay Sum is X C delay

Revision 1.0b

214

9.5. Clock Uncertainty

The maximum allowable clock uncertainty including jitter is shown in Table 9-9 and
Figure 9-13. This specification applies not only at a single threshold point but at all
points on the clock edge between Vil and Vih. For add-in cards, the maximum skew is

measured between component pins not between connectors.

Table 9-9: Clock Uncertainty Parameters

Symbol PCI-X
Conventional
PCI 66 (ref)

3.3V Signaling
Conventional
PCI 33 (ref)

Units

Vtest-clk 0.4Vcc 0.4Vcc 0.4Vcc V

Tskew 0.5 (max) 1 (max) 2 (max) ns

CLK
(@ Device #1)

CLK
(@ Device #2)

V test-clk

V test-clk

T skew

Vih

V il

T skew

T skew

V il

V ih

Figure 9-13: Clock Uncertainty Diagram

9.6. Reset

PCI-X introduces one new timing case related to RST# not present in conventional PCI.
Figure 9-14 shows the timing requirements for the PCI -X initialization pattern when
switching into PCI-X mode. Parameter values are shown in Table 9-5.

PCI_CLK

RST#

���������������

T rlcx T rst_c lk (ref)

T prsu T prh

T rst (ref)

STO P# � �
TRDY#

� �

IRDY# � �
FRAM E# � �T rhff(ref)

DEVSEL#� �
Figure 9-14: RST# Timing for Switching to PCI-X Mode Pull-ups

Revision 1.0b

215

Implementation Note: PLL Lock Times

As in conventional PCI, PLLs in some PCI-X devices do not lock to the input clock until
after the rising edge of RST#. For example, PCI 2.2 requires the input clock to be stable
only 100 µs before the rising edge or RST# (Trst_clk in Table 9-5). If the clock is stable

no more than the minimum time before the rising edge or RST# (e.g., after a hot-
insertion), and the device implements an internal PLL that requires longer than this time
to lock, the clock internal to the device will not be stable at the rising edge of RST#.
Such devices are advised by PCI HP 1.0 not to leave the reset state until the PLL is
locked and the bus is idle (FRAME# and IRDY# deasserted) to avoid the possibility of
leaving the reset state in the middle of a transaction between two other devices.

In PCI-X systems, the PCI-X initialization pattern is not guaranteed to be stable until ten
clocks before the rising edge of RST# (Tprsu in Table 9-5). If the PLL requires this

information to lock, the lock time in PCI-X systems is delayed even farther past the rising
edge of RST#.

A PLL that controls the clock to the bus interface of a PCI-X device must be stable early
enough for the device to respond to its first Configuration Read transaction, which is
specified to be no earlier than Trhfa (see Table 9-5) after the rising edge of RST#. No

method is specified for PCI-X devices to know when their PLL is locked. Some PLL
designs detect when they are locked and indicate this to the affected logic. Other PLLs
are designed to lock after a fixed length of time or a limited number of input clocks.
Devices that use the second kind of PLLs must count input clocks or implement other
suitable means to indicate that the PLL is locked.

9.7. Pull-ups

A bus capable of PCI-X operation has the same requirement for pull-ups as described in
PCI 2.2, with the following exceptions:

1. PCIXCAP pin connection described in Section 9.10.

2. Minimum pull-up resistor value is 5 kΩ.

As in conventional PCI, the PCI -X central resource is permitted to implement active bus
keepers rather than passive pull-up resistors. A complete specification of such bus
keepers is beyond the scope of this document; however, the following guidelines
generally apply:

1. Keepers must supply sufficient drive current to overcome the input leakage current of
a fully loaded bus and maintain a valid logic level.

2. Keepers optionally may be designed either to hold the bus in its present low or high
state, or may be designed only to hold the bus in the high state and work in concert
with central-resource logic that precharges an idle bus to the high logic level.

3. Keepers integrated with the source bridge must not adversely affect source bridge
timing beyond the limits of the PCI-X definition or PCI 2.2 (as appropriate for the
mode of operation).

Revision 1.0b

216

9.8. System Noise Budget

This section allocates the minimum input noise immunity of a device to the different
sources of noise.

The total noise budget allocated for PCI-X is very similar to convention PCI, with the
low noise budget identified as the difference between Vol and Vil, and the high noise

budget identified as the difference between the Voh and Vih. Figure 9-15 graphically

illustrates the total noise budget.

G nd

(0.4V C C) V TE S T

V C C

V O H (0.9V C C)

V IH (0.5V C C)

V IL (0 .35V C C)

V O L (0.1V C C)

Total H igh Noise
Budget

Total Low Noise
Budget

Figure 9-15: PCI-X Noise Budget

Table 9-10 allocates this noise margin to the various sources of noise in the system and
assigns responsibility for meeting that budget.

Table 9-10: PCI-X System Noise Budget

Noise Source Responsibility
High Noise
Budget

Low Noise
Budget

Reflective Noise Platform 0.30Vcc 0.15Vcc
Crosstalk Platform 0.05Vcc 0.05Vcc
Input Reference Offset Device 0.05Vcc 0.05Vcc
Total 0.4Vcc 0.25Vcc

Reflective noise includes those aspects of signal quality caused by impedance
mismatches and resultant signal reflections. The platform vendor adjusts system-board
loading and routing to meet this requirement. The add-in card must be designed
according to the requirements of Section 9.13.

Revision 1.0b

217

Crosstalk includes noise caused by switching of adjacent signals that is induced onto the
signal in question through capacitive and inductive coupling between traces on the circuit
board. The platform vendor must control signal spacing and length to meet this budget.
The add-in card must be designed according to the requirements of Section 9.13.3.

Input Reference Offset is the offset in the reference power supply levels used by the input
buffer inside a device. It is caused by the inductance in the supply paths of the device
and changes in supply current. This budget applies during the input setup time. (The
effects of changing supply currents on output buffers is included in Tval in Table 9-5.)

9.9. System Timing Budgets

PCI-X system timing is measured using the same techniques as specified in PCI 2.2 for
66 MHz conventional PCI. Platform designers are permitted to implement any system
topology. Platform designers must guarantee that all devices and add-in cards designed
to this specification operate properly in any location in that topology. Platform designers
are permitted to reduce the operating clock frequency to the limit specified in Table 9-4
to allow more time for signals to propagate and settle at all inputs with the specified setup
time.

Table 9-11 shows the system-timing budget for the standard PCI-X operating
frequencies.

Table 9-11: Setup Time Budget

Parameter PCI-X
133 MHz

PCI-X
100 MHz

PCI-X
66 MHz

Conventional
PCI 66 MHz

(ref)

Conventional
PCI 33 MHz

(ref)

Units

Tval (max) 3.8 3.8 3.8 6 11 ns
Tprop (max) 2.0 4.5 9.0 5 10 ns
Tskew (max) 0.5 0.5 0.5 1 2 ns
Tsu (min) 1.2 1.2 1.7 3 7 ns
Tcyc 7.5 10.0 15.0 15 30 ns

Table 9-12 shows the system-timing budget for minimum output delay and signal
propagation time. Minimum signal propagation time (Tprop) is measured in a manner

similar to the maximum delay described in PCI 2.2 for 66 MHz conventional PCI.
Minimum Tprop begins when the voltage at the output buffer would have crossed the

threshold point (Vtrise or Vtfall) had the output been driving the Tval (min) test load

shown in Figure 9-10. It ends the first time the signal crosses the input voltage limit for
the initial logic level at any input pin. That is, for a falling signal Tprop (min) ends the

first time the signal crosses Vih (min) at any input pin. For a rising signal Tprop (min)

ends the first time the signal crosses Vil (max) at any input pin.

 Revision 1.0b

218

Table 9-12: Hold Time Budget

Parameter PCI-X Conventional
PCI 66 MHz

(ref)

Conventional
PCI 33 MHz

(ref)

Units

Tval (min) 0.7 2 2 ns

Tprop (min) 0.3 0 0 ns

Tskew (max) 0.5 1 2 ns

Th (min) 0.5 0 0 ns

9.10. PCIXCAP Connection

Add-in cards indicate that they are capable of PCI-X operation and, if so, at what
frequency, by the connection of one pin on the PCI expansion connector, PCIXCAP,
which is pin 38B. The connection of this pin must be consistent with the PCI-X
Capability List item (see Sections 7.2 and 8.6.2) and the 133 MHz Capable bit in the
PCI-X Status register or PCI-X Bridge Status register (see Sections 7.2.4 and 8.6.2.4).
Conventional cards connect this pin directly to ground. PCI-X 133 cards connect
PCIXCAP to ground through a 0.01 µF ±10% capacitor to provide an AC signal return
path. PCI-X 66 cards connect PCIXCAP to ground through a 10 kΩ ±5% resistor in
parallel with a 0.01 µF ±10% capacitor to provide an AC signal return path.

The maximum trace length between the resistor (if installed), capacitor, and the connector
contact is 0.25 inches. The maximum trace length between the resistor (if installed),
capacitor, and ground is 0.1 inches.

A PCI-X card is not permitted to connect PCIXCAP to anything else including supply
voltages and device input and output pins. (In some PCI hot-plug systems, the system
board detects the state of this pin before applying power to the slot.)

A PCI-X system provides a circuit for sensing the state of the PCIXCAP pin (see
Section 14). Suitable decoupling to provide an AC signal return path is also required on
the system board. A system that is capable of operation in PCI-X mode only at 66 MHz
or below distinguishes PCI-X 133 cards from PCI-X 66 cards only for reporting card
capabilities to the user, which can also be done by reading the 133 MHz Capable bit in
the PCI-X Status register. If the system does not support PCI hot-plug, the PCIXCAP
pin for multiple connectors is permitted to be bused and connected to a single system-
board sensing circuit. PCI hot-plug systems must provide a means for the software to
determine the states of PCIXCAP for each add-in slot independently.

Revision 1.0b

219

9.11. IDSEL Connection to AD Bus

PCI-X systems drive the address four clocks before asserting FRAME# for configuration
transactions (see Section 2.7.2.1). This allows additional settling time for the IDSEL
input of devices. As in conventional PCI, PCI-X systems are permitted to connect the
IDSEL input of devices to individual bits of the AD bus through series resistors.
(Connection through a resistor reduces the effect on system timing of the extra load on
the AD bit.) Such PCI-X systems must use a 2 kΩ ± 5% resistor, or a smaller value if
system analysis guarantees that timing and noise budgets for the AD bus are met.

No device is permitted to connect IDSEL to AD[16] (device number 0), since this device
number is reserved for the source bridge. For systems that have add-in board connectors
and connect IDSEL to the AD bus, the first four add-in board connectors are
recommended to be connected according to Table 9-13 to minimize the length of the
IDSEL trace.

Table 9-13: IDSEL to AD Bit Assignment

Slot # AD bit Device
Number

1 17 1
2 18 2
3 19 3
4 20 4

9.12. Power

9.12.1. Power Requirements

Device and add-in card power supply voltages and tolerances and add-in card load limits
are the same as for conventional PCI devices and add-in cards.

9.12.2. Sequencing

As for conventional PCI, PCI-X devices have no power supply sequence requirements.
The supply voltages are permitted to rise and fall in any order.

9.12.3. Decoupling

Same as conventional PCI.

9.13. Add-in Card Routing Requirements

As in conventional PCI, unless otherwise specified, signals listed as “Interrupt Pins,” and
“JTAG Pins” in PCI 2.2 are exempt from the PCI-X routing requirements.

Platform routing characteristics are not specified. The platform designer is responsible
for guaranteeing that add-in cards and component devices that conform to this
specification function properly in any location.

Revision 1.0b

220

9.13.1. Signal Loading

As in conventional PCI, PCI-X add-in cards are permitted to have no more than a single
electrical load on each signal, including CLK and RST#.

9.13.2. Trace Length

PCI-X add-in card signal lengths are shown in Table 9-14. REQ64# and ACK64# are in
the 32-bit portion of the connector and, therefore, are subject to the 32-bit signal length
requirement. Conventional add-in card lengths are shown for reference. The trace length
of RST# is also shown in the table. (RST# switches asynchronously with respect to
CLK. The length of RST# is limited to guarantee REQ64# and the PCI-X initialization
pattern are stable for the appropriate time after the rising edge of RST#.)

Table 9-14: Add-in Card Trace Length

Parameter PCI-X
Conventional

PCI (ref) Units
Min Max Min Max

CLK length 2.4 2.6 2.4 2.6 inch
32-bit interface signal length 0.75 1.5 - 1.5 inch
64-bit interface extension signal length 1.75 2.75 - 2.0 inch
RST# length 0.75 3.0 - - inch

9.13.3. Crosstalk

Trace spacing, geometries, and materials on add-in cards must limit cumulative crosstalk
to 5% of the amplitude of the aggressor signal. Cumulative crosstalk is the total crosstalk
from all adjacent lines to one victim line if the same aggressor signal is applied to all
adjacent lines. See Section 15 for spacing and stack-up examples.

9.13.4. Transmission Line Characteristics

Characteristic impedance and propagation delay of signals on PCI-X add-in cards is
shown in Table 9-15.

Table 9-15: Add-in Card Transmission Line Specifications

Parameter PCI-X
Conventional

PCI (ref) Units
Board characteristic impedance
(unloaded)

57 ±10% 601-100 Ω

Signaling propagation delay 150-190 150-190 ps/inch

Note:
1. Minimum conventional PCI characteristic impedance shown is for a maximum Cin of

10 pF. The PCI-X definition allows a lower characteristic impedance but also
requires a lower input capacitance.

10
.

A
p

p
en

d
ix

—
C

o
n

ve
n

ti
o

n
al

P
C

Iv
s.

A
G

P
vs

.P
C

I-
X

P
ro

to
co

lR
u

le
C

o
m

p
ar

is
o

n

T
ab

le
10

-1
:

C
on

ve
nt

io
na

lP
C

I
vs

.A
G

P
vs

.P
C

I-
X

P
ro

to
co

lC
om

pa
ri

so
n

A
rb

it
ra

ti
o

n
C

o
n

ve
n

ti
o

n
al

P
C

I
A

G
P

1.
0

A
G

P
2.

0
P

C
I-

X
A

rb
ite

r
M

on
ito

rin
g

B
us

N
o

N
o

N
o

Y
E

S

B
u

s
C

lo
ck

S
p

ee
d

C
o

n
ve

n
ti

o
n

al
P

C
I3

2-
b

it
b

u
s,

64
-b

it
b

u
s

A
G

P
1.

0
A

G
P

2.
0

P
C

I-
X

32
b

it
b

u
s,

64
b

it
b

u
s

(M
B

/s
ec

)
33

M
H

z
13

3,
26

6
M

B
/s

ec
S

D
R

-1
33

,D
D

R
-2

66
M

B
/s

ec
S

D
R

-1
33

,D
D

R
-2

66
M

B
/s

ec
N

ot
S

up
po

rt
ed

66
M

H
z

26
6,

53
3

M
B

/s
ec

S
D

R
-2

66
,D

D
R

-5
33

M
B

/s
ec

S
D

R
-2

66
,D

D
R

-5
33

M
B

/s
ec

26
6,

53
3

M
B

/s
ec

10
0

M
H

z
N

ot
S

up
po

rt
ed

N
ot

S
up

po
rt

ed
N

ot
S

up
po

rt
ed

40
0,

80
0

M
B

/s
ec

13
3

M
H

z
N

ot
S

up
po

rt
ed

66
M

H
z

D
D

R
–

53
3

M
B

/s
ec

66
M

H
z

D
D

R
–

53
3

M
B

/s
ec

53
3,

10
66

M
B

/s
ec

26
6

M
H

z
N

ot
S

up
po

rt
ed

N
ot

S
up

po
rt

ed
Q

D
R

@
66

M
H

z
–

10
66

M
B

/s
ec

N
ot

S
up

po
rt

ed

T
ra

n
sa

ct
io

n
T

yp
es

C
o

n
ve

n
ti

o
n

al
P

C
I

A
G

P
1.

0
A

G
P

2.
0

P
C

I-
X

M
em

or
y

S
up

po
rt

ed
S

up
po

rt
ed

S
up

po
rt

ed
S

up
po

rt
ed

I/O
S

up
po

rt
ed

N
ot

su
pp

or
te

d
N

ot
su

pp
or

te
d

S
up

po
rt

ed

C
on

fig
S

up
po

rt
ed

N
ot

su
pp

or
te

d
N

ot
su

pp
or

te
d

S
up

po
rt

ed

In
te

rr
up

tA
ck

no
w

le
dg

e
S

up
po

rt
ed

N
ot

su
pp

or
te

d
N

ot
su

pp
or

te
d

su
pp

or
te

d

S
pe

ci
al

C
yc

le
S

up
po

rt
ed

N
ot

su
pp

or
te

d
N

ot
su

pp
or

te
d

S
up

po
rt

ed

D
ua

lA
dd

re
ss

C
yc

le
S

up
po

rt
ed

N
ot

su
pp

or
te

d
N

ot
su

pp
or

te
d

S
up

po
rt

ed

S
pl

it
T

ra
ns

ac
tio

ns
N

ot
su

pp
or

te
d

S
up

po
rt

ed
S

up
po

rt
ed

S
up

po
rt

ed

P
rio

rit
y

T
ra

ns
ac

tio
ns

N
ot

su
pp

or
te

d
S

up
po

rt
ed

S
up

po
rt

ed
N

ot
su

pp
or

te
d

N
on

-C
ac

he
-C

oh
er

en
tT

ra
ns

ac
tio

ns
N

ot
su

pp
or

te
d

S
up

po
rt

ed
S

up
po

rt
ed

S
up

po
rt

ed

N
o/

R
el

ax
O

rd
er

in
g

R
ul

es
N

ot
su

pp
or

te
d

S
up

po
rt

ed
S

up
po

rt
ed

S
up

po
rt

ed

A
dd

re
ss

R
e-

m
ap

pi
ng

N
ot

su
pp

or
te

d
S

up
po

rt
ed

S
up

po
rt

ed
N

ot
su

pp
or

te
d

A
dd

re
ss

an
d

D
at

a
B

us
M

ul
tip

le
xe

d
D

e-
M

ul
tip

le
xe

d
D

e-
M

ul
tip

le
xe

d
M

ul
tip

le
xe

d

#
of

N
ew

P
in

s
N

/A
16

ne
w

pi
ns

20
ne

w
pi

ns
1

ne
w

pi
n

Is
oc

hr
on

ou
s

T
ra

ns
ac

tio
ns

N
ot

su
pp

or
te

d
N

ot
su

pp
or

te
d

N
ot

su
pp

or
te

d
N

ot
su

pp
or

te
d

T
ar

ge
tW

rit
e

B
uf

fe
r

F
lu

sh
N

o,
su

pp
or

te
d

us
in

g
a

st
an

da
rd

re
ad

co
m

m
an

d

Y
es

,s
up

po
rt

ed
us

in
g

th
e

F
lu

sh

co
m

m
an

d,
w

ith
ra

nd
om

da
ta

re
tu

rn
ed

Y
es

,s
up

po
rt

ed
us

in
g

th
e

F
lu

sh

co
m

m
an

d,
w

ith
ra

nd
om

da
ta

re
tu

rn
ed

N
o,

su
pp

or
te

d
us

in
g

a
st

an
da

rd
re

ad

co
m

m
an

d

T
ra

ns
ac

tio
n

O
rd

er
in

g
N

o
(B

us
O

rd
er

in
g

on
ly

)
Y

es
,d

ev
ic

e
co

nt
ro

lt
ra

ns
ac

tio
n

or
de

rin
g

(F
en

ce
)

Y
es

,d
ev

ic
e

co
nt

ro
lt

ra
ns

ac
tio

n

or
de

rin
g

(F
en

ce
)

Y
es

,d
ev

ic
e

co
nt

ro
lt

ra
ns

ac
tio

n
or

de
rin

g

(R
el

ax
ed

O
rd

er
in

g)

O
rt

ho
go

na
lP

ro
to

co
lS

up
po

rt
Y

es
N

o,
H

os
tn

ot
su

pp
or

te
d

to
so

ur
ce

A
G

P
co

m
m

an
ds

Y
es

,H
os

ta
nd

A
G

P
M

as
te

r

su
pp

or
te

d
in

en
ha

nc
ed

pr
ot

oc
ol

Y
es

P
ow

er
M

an
ag

em
en

tS
up

po
rt

(P
M

E
)

O
pt

io
na

l
N

o
N

o
Y

es

N
on

-S
no

op
ed

A
cc

es
se

s
to

H
os

t

M
em

or
y

A
llo

w
ed

W
hi

le
H

os
tM

em
or

y

Lo
ck

ed

T
yp

ic
al

ly
no

ts
up

po
rt

ed
Y

es
Y

es
Y

es

T
ra

n
sa

ct
io

n
T

er
m

in
at

io
n

C
o

n
ve

n
ti

o
n

al
P

C
I

A
G

P
1.

0
A

G
P

2.
0

P
C

I-
X

In
iti

at
or

T
er

m
in

at
io

n
S

up
po

rt
ed

S
up

po
rt

ed
S

up
po

rt
ed

S
up

po
rt

ed

M
as

te
r-

A
bo

rt
S

up
po

rt
ed

N
ot

su
pp

or
te

d
as

P
C

I
N

ot
su

pp
or

te
d

as
P

C
I

S
up

po
rt

ed

T
ar

ge
tD

is
co

nn
ec

tw
ith

da
ta

S
up

po
rt

ed
S

up
po

rt
ed

S
up

po
rt

ed
S

up
po

rt
ed

T
ar

ge
tD

is
co

nn
ec

tw
ith

ou
td

at
a

S
up

po
rt

ed
N

ot
su

pp
or

te
d

as
P

C
I

N
ot

su
pp

or
te

d
as

P
C

I
N

ot
su

pp
or

te
d

T
ar

ge
tR

et
ry

S
up

po
rt

ed
S

up
po

rt
ed

S
up

po
rt

ed
S

up
po

rt
ed

T
ar

ge
t-

A
bo

rt
S

up
po

rt
ed

N
ot

su
pp

or
te

d
as

P
C

I
N

ot
su

pp
or

te
d

as
P

C
I

S
up

po
rt

ed

B
u

rs
t

T
ra

n
sa

ct
io

n
C

o
n

ve
n

ti
o

n
al

P
C

I
A

G
P

1.
0

A
G

P
2.

0
P

C
I-

X
#

bu
rs

td
at

a
cl

oc
ks

T
w

o
or

m
or

e
da

ta
cl

oc
ks

T
w

o
or

m
or

e
da

ta
cl

oc
ks

T
w

o
or

m
or

e
da

ta
cl

oc
ks

O
ne

or
m

or
e

da
ta

cl
oc

ks

W
ai

ts
ta

te
s

T
ar

ge
ta

nd
/o

r
In

iti
at

or
ca

n
in

je
ct

w
ai

ts
ta

te
s

T
ar

ge
ta

nd
/o

r
In

iti
at

or
ca

n
in

je
ct

w
ai

ts
ta

te
s

on
ly

on
Q

W
O

R
D

bo
un

da
rie

s

T
ar

ge
ta

nd
/o

r
In

iti
at

or
ca

n
in

je
ct

w
ai

ts
ta

te
s

on
ly

on
Q

W
O

R
D

bo
un

da
rie

s

In
iti

at
or

ca
nn

ot
in

je
ct

w
ai

ts
ta

te
s.

T
ar

ge
tc

an
on

ly
in

je
ct

in
iti

al
w

ai
ts

ta
te

s

be
fo

re
da

ta
tr

an
sf

er
st

ar
ts

C
ac

he
lin

e
S

iz
e

P
ro

gr
am

m
ab

le
N

ot
us

ed
(r

ep
la

ce
d

w
ith

Q
W

O
R

D

bo
un

da
rie

s)

N
ot

us
ed

(r
ep

la
ce

d
w

ith
64

by
te

bl
oc

k
si

ze
)

N
ot

us
ed

(r
ep

la
ce

d
w

ith
A

D
B

)

La
te

nc
y

T
im

er
P

ro
gr

am
m

ab
le

N
ot

su
pp

or
te

d
N

ot
su

pp
or

te
d

P
ro

gr
am

m
ab

le

M
em

or
y

R
ea

d
B

E
ar

e
va

lid
B

E
ar

e
re

se
rv

ed
B

E
ar

e
re

se
rv

ed
B

E
on

ly
fo

r
D

W
O

R
D

tr
an

sa
ct

io
ns

M
em

or
y

R
ea

d
Li

ne
B

E
ar

e
va

lid
(ig

no
re

d
by

T
ar

ge
t)

N
ot

su
pp

or
te

d
N

ot
su

pp
or

te
d

R
ep

la
ce

d
w

ith
bu

rs
tt

ra
ns

ac
tio

ns

M
em

or
y

R
ea

d
M

ul
tip

le
Y

es
N

ot
su

pp
or

te
d

N
ot

su
pp

or
te

d
N

ot
su

pp
or

te
d

M
em

or
y

W
rit

e
B

E
ar

e
va

lid
B

E
ar

e
va

lid
B

E
ar

e
va

lid
B

E
ar

e
va

lid

M
em

or
y

W
rit

e
an

d
In

va
lid

at
e

B
E

ar
e

va
lid

(ig
no

re
d

by
T

ar
ge

t)
N

ot
su

pp
or

te
d

N
ot

su
pp

or
te

d
R

ep
la

ce
d

w
ith

M
em

or
y

W
rit

e
B

lo
ck

tr
an

sa
ct

io
n

B
u

rs
t

L
en

g
th

C
o

n
ve

n
ti

o
n

al
P

C
I

A
G

P
1.

0
A

G
P

2.
0

P
C

I-
X

M
in

im
um

da
ta

cl
oc

ks
2

D
at

a
C

lo
ck

s
2

D
at

a
C

lo
ck

s
2

D
at

a
C

lo
ck

s
B

yt
e

co
un

to
r

32
cl

oc
ks

fo
r

32
bi

tb
us

B
yt

e
co

un
to

r
16

cl
oc

ks
fo

r
64

bi
tb

us

32
bi

tB
us

8
by

te
s

8
by

te
s

8
by

te
s

8
by

te
s

32
bi

tM
in

im
um

B
ur

st
Le

ng
th

8
by

te
s

8
by

te
s

8
by

te
s

B
yt

e
co

un
to

r
12

8
by

te
s

64
bi

tB
us

16
by

te
s

N
ot

su
pp

or
te

d
N

ot
su

pp
or

te
d

16
by

te
s

64
bi

tM
in

im
um

B
ur

st
Le

ng
th

16
by

te
s

N
ot

su
pp

or
te

d
N

ot
su

pp
or

te
d

B
yt

e
co

un
to

r
12

8
by

te
s

M
ax

im
um

bl
oc

k
si

ze
O

pe
n

(U
nl

im
ite

d)
32

by
te

s,
25

6
by

te
s

fo
r

lo
ng

re
ad

s

64
by

te
s,

25
6

by
te

s
fo

r
lo

ng

re
ad

s

40
96

by
te

s

S
ta

nd
ar

d
bl

oc
k

si
ze

C
ac

he
Li

ne
S

iz
e

F
ix

ed
32

by
te

s
F

ix
ed

64
by

te
s

F
ix

ed
12

8
by

te
s

T
o

p
o

lo
g

y
C

o
n

ve
n

ti
o

n
al

P
C

I
A

G
P

1.
0

A
G

P
2.

0
P

C
I-

X
P

or
t/B

us
/H

ie
ra

rc
hi

ca
lB

us
N

o/
Y

es
/Y

es
Y

es
/N

o/
N

o
Y

es
/N

o/
N

o
Y

es
/Y

es
/Y

es

P
C

IS
lo

tC
om

pa
tib

ili
ty

N
/A

N
o

N
o

Y
es

D
ec

o
d

e
S

p
ee

d
s

C
o

n
ve

n
ti

o
n

al
P

C
I

A
G

P
1.

0
A

G
P

2.
0

P
C

I-
X

1
cl

oc
k

af
te

r
ad

dr
es

s
ph

as
e(

s)
D

ec
od

e
S

pe
ed

F
A

S
T

N
ot

su
pp

or
te

d
N

ot
su

pp
or

te
d

N
ot

su
pp

or
te

d

2
cl

oc
k

af
te

r
ad

dr
es

s
ph

as
e(

s)
D

ec
od

e
S

pe
ed

M
E

D
S

up
po

rt
ed

S
up

po
rt

ed
D

ec
od

e
S

pe
ed

A

3
cl

oc
k

af
te

r
ad

dr
es

s
ph

as
e(

s)
D

ec
od

e
S

pe
ed

S
LO

W
S

up
po

rt
ed

S
up

po
rt

ed
D

ec
od

e
S

pe
ed

B

4
cl

oc
k

af
te

r
ad

dr
es

s
ph

as
e(

s)
D

ec
od

e
S

pe
ed

S
ub

tr
ac

tiv
e

S
up

po
rt

ed
S

up
po

rt
ed

D
ec

od
e

S
pe

ed
C

6
cl

oc
k

af
te

r
ad

dr
es

s
ph

as
e(

s)
N

ot
su

pp
or

te
d

N
ot

su
pp

or
te

d
N

ot
su

pp
or

te
d

D
ec

od
e

S
pe

ed
S

ub
tr

ac
tiv

e

C
o

n
fi

g
A

cc
es

s
C

o
n

ve
n

ti
o

n
al

P
C

I
A

G
P

1.
0

A
G

P
2.

0
P

C
I-

X
A

dd
re

ss
P

re
dr

iv
e

O
pt

io
na

l,
sy

st
em

de
pe

nd
en

t
N

ot
su

pp
or

te
d

N
ot

su
pp

or
te

d
R

eq
ui

re
d

T
ra

n
sa

ct
io

n
P

h
as

es
C

o
n

ve
n

ti
o

n
al

P
C

I
A

G
P

1.
0

A
G

P
2.

0
P

C
I-

X
A

dd
re

ss
an

d
C

om
m

an
d

P
ha

se
S

up
po

rt
ed

S
up

po
rt

ed
S

up
po

rt
ed

S
up

po
rt

ed

R
es

po
ns

e
P

ha
se

D
ec

od
e

S
pe

ed
N

ot
su

pp
or

te
d

N
ot

su
pp

or
te

d
D

ec
od

e
S

pe
ed

A
ttr

ib
ut

e
P

ha
se

N
ot

A
va

ila
bl

e
S

up
po

rt
ed

S
up

po
rt

ed
S

up
po

rt
ed

D
at

a
P

ha
se

S
up

po
rt

ed
S

up
po

rt
ed

S
up

po
rt

ed
S

up
po

rt
ed

T
er

m
in

at
io

n
P

ha
se

In
iti

at
or

an
d

T
ar

ge
t

In
iti

at
or

an
d

T
ar

ge
t

In
iti

at
or

an
d

T
ar

ge
t

In
iti

at
or

an
d

T
ar

ge
t

T
ur

n-
ar

ou
nd

R
eq

ui
re

d
R

eq
ui

re
d

R
eq

ui
re

d
R

eq
ui

re
d

A
tt

ri
b

u
te

F
ie

ld
C

o
n

ve
n

ti
o

n
al

P
C

I
A

G
P

1.
0

A
G

P
2.

0
P

C
I-

X
B

yt
e

C
ou

nt
N

ot
su

pp
or

te
d

S
up

po
rt

ed
S

up
po

rt
ed

S
up

po
rt

ed

D
on

’t
S

no
op

N
ot

su
pp

or
te

d
S

up
po

rt
ed

S
up

po
rt

ed
S

up
po

rt
ed

R
el

ax
ed

O
rd

er
in

g
N

ot
su

pp
or

te
d

S
up

po
rt

ed
S

up
po

rt
ed

S
up

po
rt

ed

F
un

ct
io

n
#

N
ot

su
pp

or
te

d
N

/A
N

/A
S

up
po

rt
ed

D
ev

ic
e

#
N

ot
su

pp
or

te
d

N
/A

N
/A

S
up

po
rt

ed

B
us

#
N

ot
su

pp
or

te
d

N
/A

N
/A

S
up

po
rt

ed

T
ag

N
ot

su
pp

or
te

d
S

up
po

rt
ed

S
up

po
rt

ed
S

up
po

rt
ed

B
u

s
W

id
th

C
o

n
ve

n
ti

o
n

al
P

C
I

A
G

P
1.

0
A

G
P

2.
0

P
C

I-
X

M
em

or
y

A
dd

re
ss

32
or

64
bi

ts
32

/3
6/

64
bi

ts
2/

47
/6

4
bi

ts
64

bi
ts

I/O
A

dd
re

ss
32

bi
ts

N
/A

N
/A

32
bi

ts

D
at

a
32

or
64

bi
ts

32
bi

ts
32

bi
ts

32
or

64
bi

ts

Revision 1.0b

225

11. Appendix—Use Of Relaxed Ordering

Ordering rules are specified to guarantee a consistent view of data by all devices in the
system and rational behavior for communication between multiple devices and their
software drivers (if any). There is a trade-off, however, between the strictness of the
ordering rules and the performance and scalability of a system. In a very simple system,
it is practical to have all devices in the system observe all transactions in exactly the same
order. Consider, for example, a system built around a single shared bus utilizing only
atomic transactions. In this system, all transactions initiated by any initiator to any target
are visible in the same order by all devices on the bus.

Extending strict ordering behavior to more complex multiple-bus systems is possible but
can extract a severe performance penalty. Generally, ordering requirements are relaxed
in varying degrees to meet performance objectives without imposing an undue burden on
software. In a two-bus system, for example, transactions between peer devices on one
bus are generally allowed to proceed without regard to transactions between peer devices
on the other bus. In this case, one set of (implicit) ordering rules would be applied to
transactions that stay entirely on one bus, and a different set applied to transactions that
cross between the buses. Allowing memory write transactions to be posted is an example
of such an ordering relaxation designed to improve system performance.

The larger and more complex the system, the more difficult the trade-offs become.
Systems may implement several classes of interconnects such as processor and memory
buses, interconnection fabrics (e.g., crossbar, hypercube, etc.), and I/O buses. Ordering
requirements for transactions between CPUs and memory or between the CPUs
themselves typically vary with processor architecture and system implementation. These
requirements sometimes differ substantially from the ordering requirements imposed by a
standardized I/O subsystem such as PCI. For example, one of the underlying
assumptions in PCI ordering is the tree structure of the bus hierarchy. Such a structure is
not present in some processor-memory domains. Devices that connect the domains (e.g.,
a PCI host bridge) are responsible for managing differences in ordering requirements
between the domains without unduly degrading performance.

Conventional PCI ordering rules apply globally to all transactions without regard to the
underlying communication semantics. The Relaxed Ordering attribute in PCI-X
transactions allows certain ordering requirements to be indicated explicitly on a
transaction-by-transaction basis providing a tool to help system designers and software
writers achieve better overall performance. Specifically, the PCI-X Relaxed Ordering
attribute may be used to allow a memory write transaction to pass other memory writes
and to allow a Split Read Completion to pass memory writes. An initiator permits the
first case by setting the Relaxed Ordering attribute on a memory write transaction and
permits the second case by setting the Relaxed Ordering attribute on a Split Read
Request. (The Relaxed Ordering attribute is echoed in the corresponding completion.)
The Relaxed Ordering attribute has no effect on a Split Write Request.

In general, read and write transactions to or from I/O devices are classified as payload or
control. (PCI 2.2 Appendix E refers to payload as Data and control as Flag and Status.)
If the payload traffic requires multiple data phases or multiple transactions, such payload
traffic rarely requires ordered transactions. That is, the order in which the bytes of the
payload arrive is inconsequential, if they all arrive before the corresponding control
traffic. However, control traffic generally does require ordered transactions. I/O devices
that follow this programming model could use this distinction to set the Relaxed Ordering
attribute in hardware with no device driver intervention. Such a device could set the
Relaxed Ordering attribute bit for all payload read and write transactions and not set the

Revision 1.0b

226

attribute for all control read and write transactions. Other devices may want to provide a
means (beyond the scope of the PCI-X specification) for their device driver to indicate
when it is permissible to set the Relaxed Ordering attribute. In all cases, no requester is
allowed to set the Relaxed Ordering attribute bit if the Enable Relaxed Ordering bit in the
PCI-X Command register is cleared.

11.1. Relaxed Write Ordering

When an I/O device receives a block of data destined for system memory, it typically
writes that data (payload) into a location in system memory previously specified by the
I/O device’s software driver. After transferring all of the data, the I/O device indicates
completion of the I/O operation by writing status (control) information, often to a
separate area in memory, and then possibly generating an interrupt. This type of
programming model generally considers the memory buffer area undefined until the
status has been written. Thus, individual write transactions to that buffer area can be
allowed to complete out of order as long as the status write pushes all previous writes
ahead of it. An I/O device can easily accomplish this by setting the Relaxed Ordering
attribute for all payload write transactions but always generating a separate transaction
for the status write(s) with the Relaxed Ordering attribute not set.

Relaxed write ordering is arguably of little value within the PCI-X domain. Generally,
all writes from a single device pass through the same host bridge on their way to system
memory, so if one write gets blocked, so would the next one. The real value comes
within the host bridge where PCI ordering must be mapped into the host system. It can
be very difficult for a system with multiple paths to memory from a single host bridge to
ensure all CPUs see all writes from that host bridge in order without significant
performance impact. Relaxed write ordering can allow kilobytes to gigabytes of payload
data to stream into memory while imposing the ordering burden on only the handful of
status writes that really need it.

11.2. Relaxed Read Ordering

PCI 2.2 does not specify any ordering requirements for multiple read completions
traveling in the same direction, so any device supporting more than one outstanding read
request must be prepared to receive the respective completions in any order. Relaxed
read ordering instead applies to the conventional PCI requirement for read completions
not to pass memory writes traveling in the same direction. When one device (e.g., the
CPU) is preparing new work for another, it typically writes a block of data (the payload)
into a memory buffer, and then writes a control structure at another location. The first
device (the CPU) generally does not change the data again after the control structure is
written. At a minimum, the CPU guarantees that the data location is consistent with the
control location at the time the control location is written. After the device discovers the
new control structure, it reads the data buffer and begins its operation. If the control
structure is read with strict ordering (Relaxed Ordering attribute not set), it pushes or
pulls all the data writes to their final destinations in the same manner as required by
PCI 2.2. Once the new control structure has been read by the device, the device can read
the data buffer with the Relaxed Ordering bit set, thereby preventing the reads from being
unnecessarily blocked behind other unrelated write transactions.

Relaxed read ordering can be of significant benefit in systems with a large number of
memory write transactions addressing targets that delay the completion of those writes up
to the maximum described in Section 2.13. Memory writes to these slow devices block
progress of all read completions moving in the same direction, because the system

Revision 1.0b

227

hardware cannot distinguish between related and unrelated transactions. The often-cited
case is that of CPU memory write transactions addressing a graphics device introducing
lengthy stalls in other devices’ main-memory read completions. But this is certainly not
the only situation in which relaxed reads are desirable. Any device that requires a
significant number of memory write transactions from a CPU potentially introduces
unnecessary performance degradations on other devices. (The I2O “push” messaging
model is an example). If those other devices set the Relaxed Ordering attribute bit for
their payload reads (indicating that they are not related to any write transaction that may
be in progress), those reads are allowed to pass the congested memory write transactions.

11.3. Co-location of Payload and Control

Programming models that require the pay load and control (or Data and Flag) to be co-
located (that is, located on the same side of all bridges in the system) are permitted to set
the Relaxed Ordering attribute bit when reading the control locations as well as the
payload. If there are no bridges between the payload and control locations, there are
never any write transactions addressing the payload that the read of the control locations
must flush. Setting the Relaxed Ordering attribute bit for control-location read
transactions enables the corresponding read completions to pass unrelated congested
memory writes that would otherwise block control reads.

Co-location of payload and control generally does not enable the device to set the
Relaxed Ordering attribute bit for write transactions. If writes to the payload space must
finish at the completer before write to the control space, the requester must not set the
Relaxed Ordering attribute on writes to the control space.

11.4. Other Uses of Relaxed Ordering

Devices are permitted to set the Relaxed Ordering attribute bit on any transaction for
which the programming model of the device guarantees that the system hardware does
not need memory writes to be kept in order with respect to each other and Split Read
Completions are allowed to pass memory write transactions moving in the same
direction. It is possible for devices to expand the use of the Relaxed Ordering attribute
beyond those described above by using ordered transactions only on a carefully selected
subset of control transactions or through the use of explicit information passed by the
device driver. It is also possible to use relaxed ordering on transactions initiated by the
host bridge, if the system provides a method for a CPU to specify its ordering
requirements. (This might allow more timely completion of a CPU generated read of an
I/O register in the midst of a flood of device-to-memory write traffic.) These types of
uses may be of little benefit to many systems but are valuable for specialized
applications.

In all cases, no requester is allowed to set the Relaxed Ordering attribute bit if the Enable
Relaxed Ordering bit in the PCI-X Command register is cleared.

Revision 1.0b

228

11.5. I2O Usage Models

The introduction of the I2O specification for intelligent peripherals has made certain
system topologies more likely to be used. Three common implementations of I2O-based
peripherals are presented: the Push Model, the Pull Model, and the Outbound Option.

I2O Peripheral

Local Storage
Local Processor

Free List Posting Queue Free List Posting Queue

Inbound FIFOs (40h) Outbound FIFOs (44h)

Figure 11-1: I2O Standard Components

Every I2O device implements a standard programming interface shown in Figure 11-1.
When the system is initialized, memory locations are reserved as buffers for messages
moving both to (inbound) and from (outbound) the I/O platform (IOP). Pointers to these
message buffers are managed by various free lists and posting queues contained either in
the IOP or in host memory depending upon the messaging protocol model in use.

The original I2O messaging protocol model (the “Push Model”) places all free lists and
posting queues in the IOP, allocates all message buffers at the receiver, and relies on the
sender always pushing (writing) message buffer contents towards the receiver
destination.

A different usage model called the “Pull Capability” allows message buffers used for
host-to-IOP communication to reside in host memory and be pulled (read) from host
memory by the IOP when needed. In addition, the free list for these host-resident
inbound message buffers is also kept in host memory.

Another usage model called the “Outbound Option” allows the posting queue for
outbound message buffers to reside in host memory. (Outbound message buffers
themselves reside in host memory for all of these models and are used strictly for IOP–to-
host communication.)

11.5.1. I2O Messaging Protocol Operation

For the CPU to send a message to the IOP, the CPU acquires a message buffer by reading
an entry from the Inbound Free List. The value either points to the next available buffer
or indicates that no buffers are available. If a buffer is available, the CPU fills it with the
message and writes the value of the pointer to the Inbound Posting Queue, which notifies
the local processor that new work has arrived. The local processor reads the message
from the buffer and processes it. When the local processor finishes using the buffer, it
returns the buffer pointer to the Inbound Free List.

Revision 1.0b

229

For the local processor to send a message to the CPU, the local processor acquires a
buffer pointer from the Outbound Free List. If a buffer is available, the local processor
fills it with the message and writes the value of the pointer to the Outbound Posting
Queue. This operation generates an interrupt to the CPU. The CPU then reads the
pointer to the buffer from the Outbound Posting Queue and begins work on the buffer.
When the CPU finishes using the buffer, it returns it to the Outbound Free List.

The actual location of the Inbound Free List and Outb ound Posting Queue vary according
to the protocol option in use, but their logical operation remains the same.

11.5.2. Message Delivery with the Push Model

The original I2O messaging usage model is called the “push model” because data for both
inbound and outbound messages are pushed (written) to the destination. See Figure 11-2.

The CPU “pushes” both the message data (payload) and the Inbound Posting Queue
(control) for inbound messages under the push model. If the system provides a method
for the CPU to designate which transactions are message data and which are writes to the
Inbound Posting Queue, the host bridge is permitted to set the Relaxed Ordering attribute
bit on writes of the message data.

The local processor “pushes” the message data (to main memory) and then writes to the
Outbound Posting Queue (a local hardware register) to interrupt the processor. Since the
trigger method in this case uses a sideband path (an interrupt to the CPU) rather than the
bus, the two events must be synchronized. Two alternatives are commonly used in PCI
systems to synchronize the two events. The first alternative is for the IOP to read back
some of the message data to guarantee that it is delivered all the way to main memory
before interrupting the CPU. The second alternative is for the CPU to read from the
device as part of the interrupt service routine to flush data in transit. In both cases, the
IOP is permitted to set the Relaxed Ordering attribute on the writes of the message data.

Revision 1.0b

230

I2O Peripheral

Local Storage

Local Processor

Free List Posting Queue Free List Posting Queue

Inbound FIFOs (40h) Outbound FIFOs (44h)

Host Bridge

CPU

M ain M emory

Figure 11-2: I2O Push Model

11.5.3. Message Delivery with the Pull Model

With the pull model inbound message buffers are placed in host memory and the local
processor pulls (reads) message data from them. In addition, the Free List is likewise
placed in host memory. Outbound messaging is not affected by use of the pull model
(same as push model). See Figure 11-3.

Under the pull model, the IOP is permitted to set the Relaxed Ordering attribute when
reading the message data. This allows the host bridge (and other intervening bridges) to
avoid unnecessary blocking of the Split Read Completion transactions (containing the
message data) by unrelated memory write transactions moving in the same direction.

Revision 1.0b

231

I2O Peripheral

Local Storage

Local Processor

Free List Posting Queue Free List Posting Queue

Inbound FIFOs (40h) Outbound FIFOs (44h)

Host Bridge

CPU

M ain M emory

Figure 11-3: I2O Pull Model

11.5.4. Message Delivery with the Outbound Option

With the Outbound Option, the Outbound Posting Queue is placed in host memory using
software rather than hardware to manage the queue. Inbound messaging is not affected
by use of the Outbound Option feature.

With the Outbound Option, the IOP is permitted to set the Relaxed Ordering attribute bit
on writes of the message data and must not set the bit on writes to the Outbound Posting
Queue. The strictly ordered writes to the Outbound Posting Queue push the message data
ahead of them.

11.5.5. Message Delivery with Peer to Peer

As the I2O specification is expanded to make peer-to-peer operations practical, many
messages move directly from one IOP to another rather than between an IOP and main
memory.

Messages between IOPs are always handled as inbound messages with respect to the
destination IOP and follow the original I2O messaging protocol for inbound messages.

Revision 1.0b

232

The writing IOP is permitted to set the Relaxed Ordering attribute bit on writes of the
message data and must not set the bit on writes to the Inbound Posting Queue. The
strictly ordered writes to the Inbound Posting Queue push the message data ahead of
them.

Revision 1.0b

233

12. Appendix—Minimal PCI Power Management
Support

If a device has no need for allowing its power to be managed, PCI PM 1.1 specifies the
minimal support required to enable software to determine the power management
capability of the device and to allow it to operate in an environment that manages the
power of other devices. The following list is a summary of the minimum hardware
requirements for PCI power management. This information is provided for reference
purposes only. Refer to PCI PM 1.1 for complete information. In case of conflict, PCI
PM 1.1 takes precedence.

1. Implementation of the Capabilities List Data Structure – Note that in a minimal
implementation these may all be Read-Only bits

• PCI Status register modified such that bit(4) set to “1b” indicating presence of
Capability List

• Cap_Ptr register (PCI Config Header offset 34h, indicating offset to PCI-PM
register file or another Capabilities List item)

• Cap_ID register (8 bit register actually residing within the PCI-PM register file)

• Next_Item_Ptr register (8 bit register actually residing within the PCI-PM
register file)

2. Implementation of the PCI-Power Management register file

• PMC Power Management Capabilities Register
(16 bit Read-Only register)

• PMCSR Power Management Control/Status Register
(16 bit register–bits 1, 0 (Power State) Read-Write)

• PMCSR-BSE P2P Bridge Register (Non-0 for P2P bridges only)
(8 bit Read-Only register)

• DATA Power Data Register (Minimally read all 0s)
(8 bit Read-Only register)

Revision 1.0b

234

3. Implementation of Power Management States

• D0 – Represents a fully configured and operational PCI function. (All devices
automatically support this state.)

• D3cold – Device has no power applied. (All devices automatically support this
state.)

• D3hot – Device is in a state in which it can be restored without a full boot
sequence. While in this state, the device is ready to have its clocks stopped and
its power removed. (This state enables software to effectively single out an idle
PCI function and selectively shut it “off” via program control enabling power
savings even when the system is otherwise in use.)

D3hot is the only new device power managed state (D-State) from a legacy PCI
perspective. Implementers should note the following restrictions on devices in
D3hot (from Sections 5.4 and 5.6 of PCI PM 1.1):

– Device must respond to Configuration cycles.

– Device must NOT respond to I/O or Memory cycles.

– Device must NOT generate interrupts.

– Device must NOT initiate PCI transactions other than Split Completions.

– Device must “perform the equivalent of a warm (soft) reset internally” when
programmed to D0.

4. The following pins are required only by devices needing to wake the system.

• 3.3Vaux – Provides standby power to a powered down device

• PME# – Used by a power-managed device to request attention

3.3Vaux and PME# are only required by a device (like a LAN controller or modem)
that needs to wake the system because of some external stimulus; e.g., received a
packet from a network or a ring to a modem. Refer to PCI PM 1.1 for more details.

Revision 1.0b

235

13. Appendix—Setting Performance Registers

13.1. Setting the Maximum Memory Read Byte Count Register

The Maximum Memory Read Byte Count register sets the maximum byte count a PCI-X
device uses when initiating a Sequence with one of the burst memory read commands
(see Section 7.2.3). System configuration software is permitted to use any algorithm for
selecting the setting of the Maximum Memory Read Byte Count register that best meets
the requirements of the system. The default register value (512 bytes) is effective for bus
segments that share resources such as host or PCI-X bridge buffers with other devices.
Some devices that don’t share the source bridge with other devices are more efficient by
using larger byte counts.

Systems that support PCI hot-plug optionally adjust the settings for all devices on the bus
after each hot-plug operation or leave the registers in a state that is satisfactory for all
possible configurations of full and empty slots.

13.2. Optimizing the Split Transaction Commitment Limits in
PCI-X Bridges

PCI-X bridges include upstream and downstream Split Transaction Commitment Limit
registers to control the maximum cumulative size of all transactions forwarded by the
bridge (see Sections 8.4.2.1, 8.6.2.5, and 8.6.2.6). The optimum settings for these
registers are a function of the number and behavior of devices that share bus segments
with transactions that cross the bridge. If the commitment limit is set too high, Split
Completion data returns to the PCI-X bridge faster than it can be forwarded to the
requester causing Split Completions to back up toward the completer. If the commitment
limit is set too low, Split Requests are delayed unnecessarily, and requesters on one side
of the bridge experience additional latency when reading from completers on the other
side. The Split Request Delayed and Split Completion Overrun bits in the PCI-X Bridge
Status register (see Section 8.6.2.4) and Secondary Status register (see Section 8.6.2.3)
are available to help determine the optimum setting of the Split Transaction Commitment
Limit register.

Devices with a single PCI-X bridge between them and the host bridge generally
experience less latency when reading from main memory than devices that must cross
more PCI-X bridges to reach the host bridge. If a bridge whose primary bus is connected
directly to the host bridge has a Split Transaction Capacity of at least 4 Kbytes, and the
associated host bridge has a typical read latency of 3 µs or less, setting the upstream Split
Transaction Commitment Limit register equal to the upstream Split Transaction Capacity
register generally allows requests to be forwarded upstream as quickly as necessary
without any risk of terminating a Split Completion with Retry.

The read latency for downstream transactions and for transactions that cross multiple
PCI-X bridges is generally harder to predict. One method for identifying the optimum
setting for the Split Transaction Commitment Limit register in these cases is to adjust it
based on the behavior of previous traffic as indicated by the Split Request Delayed and
Split Completion Overrun status bits. The general guideline for setting the commitment
limit is that if the Split Request Delayed bit is set, the limit is potentially too low. If the
Split Completion Overrun bit is set, the limit is too high. The optimum setting of the
Split Transaction Commitment Limit register is one less than the smallest setting for

Revision 1.0b

236

which the Split Completion Overrun bit sets. (There is always room to store Split
Completion data up to the capacity of the bridge, so there is never a need to set the limit
less than the capacity of the bridge.) If bus traffic is heavy on the requester side, or if the
requester-side bus width or frequency is less than the completer side, the Split Request
Delayed bit may set even though the Split Transaction Commitment Limit register is set
optimally.

The following outline shows an example of a continuously running optimization routine
that adjusts the setting of this register:

1. The system powers up with the Split Transaction Commitment Limit register set
equal to the Split Transaction Capacity register. The Split Completion Overrun bit
never sets when the limit is equal to the bridge capacity.

2. Wait an appropriate time interval.

3. Check the Split Request Delayed bit and the Split Completion Overrun bit and adjust
the Split Transaction Commitment Limit register as follows:

If neither bit is set, the commitment limit value is good.

If the Split Request Delayed bit is set and the Split Completion Overrun bit is not set,
the commitment limit is too low. Increase the limit.

If the Split Request Delayed bit is not set and the Split Completion Overrun bit is set,
the limit is too high. Decrease the limit.

If both bits are set, the limit is too high. Decrease the limit.

4. Go to step 2.

The appropriate time interval for algorithms such as this depends upon the rate at which
traffic patterns in the system change.

If traffic patterns change over time, an algorithm such as the one described above tracks
those changes and adjusts the Split Transaction Commitment Limit appropriately. More
sophisticated algorithms that adapt to historical traffic patterns, or use varying change
increments for the register, or varying delay-time intervals are also possible.

Revision 1.0b

237

14. Appendix—Detection of PCI-X Add-in Card
Capability

As described in Section 9.10, add-in cards indicate their PCI-X mode and frequency
capabilities by the way they connect the PCIXCAP pin. PCI-X 133 cards leave the pin
unconnected (except for a decoupling capacitor). PCI-X 66 cards connect the pin to
ground through a 10 kΩ resistor (plus the decoupling capacitor). Conventional PCI cards
connect the pin to ground.

The system board provides a circuit to detect the three possible states of PCIXCAP, Vcc
(PCI-X 133), ground (conventional PCI), or in between (PCI-X 66). Two alternative
approaches for this circuit are presented in this section. The first approach uses a single
pull-up resistor on the system board and multiple voltage comparators to detect the three
states. The second alternative uses programmable pull-up resistor values and a standard
binary input buffer.

14.1. Three-level Comparator

The three-level comparator alternative is recommended for systems that need a static
indication of the state of PCIXCAP and can accommodate non-standard input buffers or
external comparators.

Figure 14-1 shows a three-level comparator circuit for detecting the state of PCIXCAP.
The circuit shows two PCI-X 66 cards installed in slots. This system board connects
PCIXCAP for both slots together in a non-hot-plug system. (Hot-plug systems must
determine the state of PCIXCAP for each slot independently.) Alternatives that connect
more or fewer slots to the circuit or provide multiple copies of the comparator circuit are
also possible. Most systems with more than two slots are too large to operate above
66 MHz, so they have no need for hardware differentiation between PCI-X 133 and
PCI-X 66 add-in cards.

The value of the pull-up resistor (“R Pullup” in the figure) determines the range of
voltages that occur on PCIXCAP for different numbers of PCI-X 66 cards. Figure 14-2
shows two such ranges. The first case uses a pull-up resistor value of 10 kΩ and
produces a range of voltages on PCIXCAP similar to standard 3.3 signaling voltages.
This alternative is preferred if the comparator has good noise margin close to ground but
less margin as the input approaches Vcc. The second case uses a 5.1 kΩ pull-up resistor
and produces a higher range of voltages. The second alternative is preferred if the
comparator has good noise margin over the full range of input voltages from ground to
Vcc.

Revision 1.0b

238

V thHI

R1

C m p tr

C1

3.3V

R2

133MHz

3.3V

3.3V

PCIXCAP

V th LO

R3

C m ptr

C2

3.3V

R4

PCIX

3.3V

R Pullup

PCI-X 66
Cards

0.01µF0.01µF

F or no n
ho t-p lug
sys tem s

on ly

10 kΩΩΩΩ

10 kΩΩΩΩ

Figure 14-1: Three-Level Comparator Circuit

0.33V
C C

0 .5V C C

2 C ards

1 C ards

P C I-X 66

G nd

V
C C

G nd

V
C C

0.5V C C

R ange 1
R P ullup = 10 kΩ

R ange 2
R P ullup = 5.1 kΩ

C onventiona l P C I C onventiona l P C I

0 .66V
C C 1 C ards

2 C ards

P C I-X 66

P C I-X 133 P C I-X 133

Figure 14-2: Three-Level Comparator Voltage Ranges

Table 14-1 shows values for the resistors that provide the comparator reference voltages
and the corresponding reference voltages. Values are calculated assuming negligible
input offset and bias currents in the comparitors.

Table 14-1: Comparator Resistors and Thresholds

Parameter Range 1 Range 2 Units
R Pullup 10 5.1 kΩ
R1 5.6 2 kΩ
R2 10 10 kΩ
R3 10 10 kΩ
R4 2.2 2 kΩ
VthHI 2.12 2.75 V

VthLO 0.60 0.55 V

Revision 1.0b

239

14.2. Programmable Pull-up and Binary Input Buffer

The programmable pull-up alternative is recommended for systems that require standard
input buffers. Systems that support PCI hot-plug slots sometimes fall into this category.
Hot-Plug Controllers often require many pins to support hot-plug operations on multiple
slots. High pin count often leads to implementations that work best if all inputs use
standard binary input thresholds.

Figure 14-3 shows a circuit for a programmable pull-up resistor. The weak pull-up
resistor value is selected to set the voltage of PCIXCAP below the low level of a
standard binary input buffer if at least one slot contains a PCI-X 66 card. The strong
pull-up resistor value is selected to set the voltage of PCIXCAP above the high level of a
standard binary input buffer if all slots contain PCI-X 66 cards (no conventional card
connecting PCIXCAP to ground). Logic controls the buffer that drives the strong pull-
up resistor. The system must provide sufficient delay after switching the pull-up resistor
for the decoupling capacitors to charge or discharge before reading the state of the
PCIXCAP pin.

Figure 14-4 shows the range of voltages on PCIXCAP for the two pull-up resistor values
and one or two PCI-X 66 add-in cards.

Figure 14-3 shows PCIXCAP for both slots connected together. A PCI hot-plug system
must provide a means to detect the states of PCIXCAP for each slot separately.

3.3V

Strong
Pull-up

3.3V

W eak
Pull-up

Strong
Pull-up

PCIXCAP

PCI-X 66
Cards

133MHz / PCIX

0.01µF0.01µF

For non
hot-p lug
system s

only

10 kΩΩΩΩ

10 kΩΩΩΩ

1 kΩΩΩΩ
56 kΩΩΩΩ

Figure 14-3: Programmable Pull-Up Circuit

Revision 1.0b

240

Gnd

0.5V CC

V CC

0.3V CC

PCI-X 66
1-2 Cards

PCI-X 66
1-2 Cards

PCI-X 133

weak
pul l-up

strong
pul l-up

PCI-X 133

convent ional PCI convent ional PCI

Figure 14-4: Threshold Ranges with Programmable Pull-Up

Revision 1.0b

241

15. Appendix—Add-In Card Multilayer Board Spacing
and Stack-Up Examples

15.1. Six-Layer-Board Examples

Figure 15-1 and Figure 15-2 show example six-layer board stack-ups that meet the PCI-X
requirements.

Figure 15-1 shows four signal layers and two power plane layers (one for Vcc and one for
ground). Layers 3 and 4 are dual-microstrips; that is, they reference the same two power
planes. All four signal layers in this stack-up are suitable for routing PCI-X signals.
Their single-line impedances meet the requirements of Section 9.13.4, and the trace
geometry and spacing meet the crosstalk requirements shown in Section 9.13.3.

Layers T race w idth Cu w eight Zo T race delay
15 m ils

L1 Signal 5 m ils 0.5 oz. Cu., 1.0 oz. f in ish 57 ohm 165 ps/in.
4 m ils

L2 G ND 1.0 oz.
5 m ils

L3 Signal 5 m ils 0.5 oz. 57 ohm 185 ps/in

15 m ils 30 m ils
L4 Signal 5 m ils 0.5 oz. 57 ohm 185 ps/in

5 m ils
L5 Power 1.0 oz.

4 m ils
L6 Signal 5 m ils 0.5 oz. Cu., 1.0 oz. f in ish 57 ohm 165 ps/in.

15 m ils

Figure 15-1: Example Six-Layer Stack-Up Using Stripline and Dual Microstrip

The following assumptions are included in Figure 15-1:

1. Internal dielectrics are standard FR4 with relative dielectric constant of 4.5.

2. External layers are covered with a 2-mil thick solder mask with relative dielectric
constant of 3.0.

3. Signal trace cross sections are trapezoidal. Trace widths listed are the base of the
trapezoid. The top of the trapezoid is 1 mil smaller. The minimum base-to-base
trace separations are shown. For all signal layers, the base of the trapezoid is
oriented toward the nearest power plane.

Note that the starting thickness of the traces on top and bottom (layers 1 and 6) is 0.5 oz
copper with final thickness after plating of 1 oz. Starting with 1.0 oz copper and plating
to 1.5 oz does not meet the requirement for characteristic impedance and crosstalk.
Using 1.5 oz finished dimensions lowers the nominal characteristic impedance to
52 ohms and increases the cumulative crosstalk to 5.3%.

Revision 1.0b

242

The minimum edge-to-edge spacing shown in Figure 15-1 assumes the dual-microstrip
layers (layers 3 and 4) are routed orthogonally. If traces on layers 3 and 4 run parallel,
the minimum edge-to-edge spacing between signals within each layer must increase to
keep the cumulative crosstalk within the specified limit. Table 15-1 shows the minimum
edge-to-edge spacing for adjacent signals on layer 3 and adjacent signals on layer 4 if
signals on layer 3 and 4 are routed parallel to each other for the length shown in the table
and have the same horizontal location in the cross section (i.e., traces on layer 3 and 4 are
routed directly opposite each other).

Table 15-1: Trace Spacing for Parallel Traces on Dual Microstrip

Minimum Spacing (between
signals on same layer)

Maximum Parallel Length
(between Layer 3 and 4)

15 mils 0
17 mils 0.38 inches
18 mils 0.59 inches
20 mils 0.97 inches

Figure 15-2 shows an alternate stack-up with three signals layers and three power plane
layers (for Vcc and ground). All three signal layers are suitable for routing PCI-X signals
(single-line impedances meet the requirements of Section 9.13.4, and the trace geometry
and spacing meet the crosstalk requirements shown in Section 9.13.3). There are no
orthogonal routing requirements for this stack-up, since all signal layers are isolated by
power planes.

Layers Trace width Cu weight Zo Trace delay
15 m ils

L1 S ignal 5 m ils 0 .5 oz. C u., 1.0 oz. f in ish 57 ohm 165 ps/in .
4 m ils

L2 P ower 1.0 oz.

57 ohm
8 m ils

L3 S ignal 5 m ils 0 .5 oz. 185 ps/in
15 m ils 8 m ils

L4 G N D 1.0 oz.
8 m ils

L5 S ignal 5 m ils 0 .5 oz. 57 ohm 185 ps/in
15 m ils 8 m ils

L6 G N D 1.0 oz.

Figure 15-2: Example Six-Layer Stack-Up Using Stripline and Single Microstrip

The following assumptions are included in Figure 15-2:

1. Internal dielectrics are standard FR4 with relative dielectric constant of 4.5.

2. External layers are covered with a 2-mil thick solder mask with relative dielectric
constant of 3.0.

3. Signal trace cross sections are trapezoidal. Trace widths listed are the base of the
trapezoid. The top of the trapezoid is 1 mil smaller. The minimum base-to-base
trace separations are shown. For layer 1, the base of the trapezoid is oriented toward
the power plane. Layers 3 and 5 are symmetric and, therefore, are allowed to be
oriented in either direction.

Note that the starting thickness of the traces on top and bottom (layers 1 and 6) is 0.5 oz
copper with final thickness after plating of 1 oz for the same reason as shown above for
Figure 15-1.

Revision 1.0b

243

15.2. Eight-Layer-Board Examples

Figure 15-3 shows an example eight-layer board stack-up that meets the PCI-X
requirements. It shows four signal layers and four power plane layers (for Vcc and
ground). All four signal layers in this stack-up are suitable for routing PCI-X signals.
Their single-line impedances meet the requirements of Section 9.13.4, and the trace
geometry and spacing meet the crosstalk requirements shown in Section 9.13.3.

Layers T race w idth Cu w eight Zo T race delay
15 m ils

L1 Signal 5 m ils 0.5 oz. Cu. 1.0 oz. f inish 57 ohm 165 ps/in.
4 m ils

L2 Power 1.0 oz.
8 m ils

L3 Signal 5 m ils 0.5 oz. 57 ohm 185 ps/in
15 m ils 8 m ils

L4 G ND 1.0 oz.
5 m ils

L5 Power 1.0 oz.
8 m ils

L6 Signal 5 m ils 0.5 oz. 57 ohm 185 ps/in
15 m ils 8 m ils

L7 G ND 1.0 oz.
4 m ils

L8 Signal 5 m ils 0.5 oz. Cu. 1.0 oz. f inish 57 ohm 165 ps/in.
15 m ils

Figure 15-3: Example Eight-Layer Stack-up

The following assumptions are included in Figure 15-3:

1. Internal dielectrics are standard FR4 with relative dielectric constant of 4.5.

2. External layers are covered with a 2-mil thick solder mask with relative dielectric
constant of 3.0.

3. Signal trace cross sections are trapezoidal. Trace widths listed are the base of the
trapezoid. The top of the trapezoid is 1 mil smaller. The minimum base-to-base
trace separations are shown. For layers 1 and 8, the base of the trapezoid is oriented
toward the power plane. Layers 3 and 6 are symmetric and, therefore, are allowed to
be oriented in either direction.

Note that the starting thickness of the traces on top and bottom (layers 1 and 8) is 0.5 oz
copper with final thickness after plating of 1 oz for the same reason as shown above for
Figure 15-1.

Revision 1.0b

244

