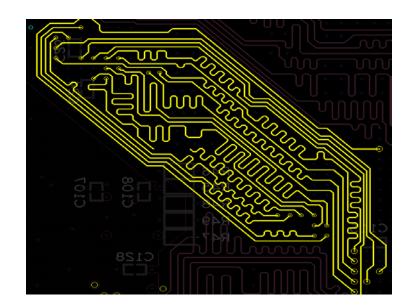
【高速先生原创|生产与高速系列】怎样才是合适的线间距?

作者: 刘为霞 一博科技高速先生团队队员

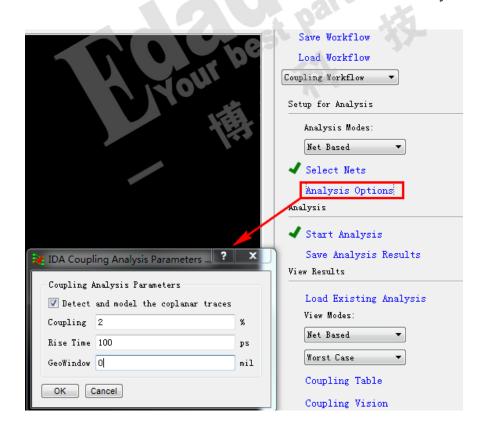
"间距我已经按照 3H 处理了而且布线空间也没办法调整了"

"这个 DDR4 是要跑 2400M 的,麻烦您调整一个合适的间距,尽量不要出问题"

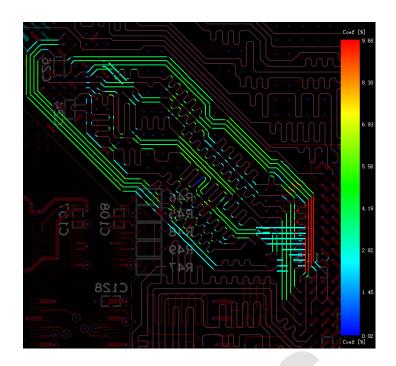
但是怎样才是合适的间距,在 layout 工程师眼里一直都是一个玄学的命题,只能放飞想象的翅膀,而不是一个可以用数字量化的结果。就好像串扰,也是一个抽象的世界,所以每每遇到这种问题,大家就只能佛系一点啦。


对于串扰,我们可能了解是怎么产生的,以及变化的趋势,但实际上,在遇到间距太近没有空间调整,或者双带线层叠的时候,我们能做的就是尽量拉开间距,却没有太直观的办法评估多大的间距会是比较合适的。在没有测试参数,没有仿真结果的情况下,是不是只能靠拍脑袋了呢?此时,Allegro17.2中的功能——线间耦合串扰分析"duang"就适时出场。这个功能可以帮 layout 工程师去衡量间距和串扰之间的平衡,用具体的参数告诉大家,怎样的间距才是合适的。还是一样用一个例子来说明新功能的实用性。

如下图所示 DDR3 信号,工作频率为 1600Mbps,按照客户要求设置了比较严格的等长要求±5mil,由于空间的影响,部分地方间距压缩到 5mil 才能完成时序等长,这个间距和我们平时的设计规范是违背的,这种时候就需要准确的数据,用严谨的态度去说服客户修改等长要求,下面我们用线间耦合串扰分析去看一下 5mil 的间距对于信号的影响大不大。

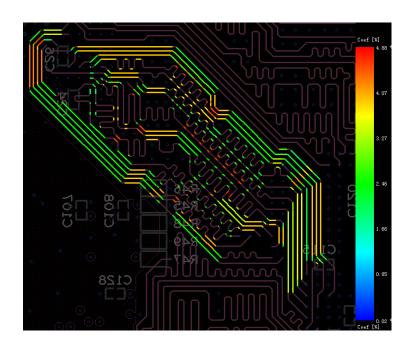

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

首先选择 Coupling Workflow,开始设置其他参数。选择需要分析的网络,设置耦 合阈值为2%,意味着耦合率为2%以下时忽略不计。一般的遵循的规则是耦合率应该 为5%以下, 当耦合率高于5%以上时, 信号间距就需要调整了。设置比较简单, 傻瓜 式操作,对于英语渣的我而言,可以说是非常的人性化了。选择 start analysis。



结果也是通过两种方式显示: coupling Vision,比较直观的一种方式,把鼠标放置 在相应的线段上时, 也会显示相应的耦合系数。

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习


另一种结果显示方式是 coupling table,数据比较清晰具体,主要关注的是最大耦 合系数以及耦合系数大于5%的部分线长比例。

orst Case Mode	•										
unmary Table											
Net Name	Max Coupling				% Length with Coupling Coef						
	Aggressor Net Name		Coef(%) Length(%)		> 5%		2%~5%	Total	Total Coupling Index (mils-%)		
DATA_D10	DATA D13	6.	.40	0.21	2.97		34.28	8525,3	9		
DATA D11	DATA D10			0.14	0.48		30.23	6476.6			
DATA D12	DATA D13	6.	.10).23	6.75		36.60	10557.	76		
DATA_D13	DATA_D10	6.	.40).23	6.00		43.09	9889.0	0		
DATA_D14	DATA_D15	4.		5.11	0.00		48.76	12346.	70		
DATA_D15	DATA_D14			80.6	0.00		39.45	7167.1			
DATA D16	DATA D17).65	9.34		18.93	7596.0			
DATA_D17	DATA_D16			.31	3.16		23.78	5842.3			
DATA_D18	DATA_D17			.28	1.28		34.96	7130.9			
DATA_D19	DATA_D22).22	10.8		39.35	11173.			
DATA_D20	DATA_D18).73	0.00		34.10	7266.9			
DATA_D21	DATA_D12			.31	6.31		25.27	5433.0			
DATA_D22	DATA_D19			0.23	11.2		41.29	16746.			
DATA_D23 DATA_D8	DATA_D16 DATA_D9).39 7.09	0.00		22.75 29.59	11788. 6399.2			
DATA D9	DATA D11			.32	0.00		37.43	11786.			
etailed Table Victim Tr	and Ref	nuncana Nat	Т	e R Coupling	Cant	Lengt	th Layer		Victim Segment		Aggressor Segment
		•	, ,		Coer				•		
◊ (1) Trace285			Trace1879::D/			17.403	06LAY04	(3	980.000 1207.831), (3980.00	0 1225.234)	
(2) Trace287	9::DATA_D16 DAT	A_D17	Trace2695::D/	4 9.66		10.000	06LAY04	(3	950.000 1423.796), (3950.00	0 1433.796)	
(4) Trace286	3::DATA_D16 DAT	A_D17	Trace2695::DA	4 9.66		10.000	06LAY04	(3	950.000 1343.796), (3950.00	0 1353.796)	
	1::DATA_D16 DAT	A_D17	Trace2695::D/	4 9.66		10.000	06LAY04	(3	950.000 1383.796), (3950.00	0 1393.796)	
	9::DATA D16 DAT	A D23	Trace1879::D/	4 9.62		9.766	06LAY04	(3	980.000 1235.234), (3980.00	0 1245.000)	
▷ (3) Trace286	7::DATA D16 DAT	A D23	Trace1879::D/	9.62		10.000	06LAY04	(3	980.000 1363.796), (3980.00	0 1373,796)	
▷ (3) Trace285		-	Trace1879::D/		-	20.234	06LAY04		980.000 1245.000), (3980.00		
(3) Trace285		-	Trace1879::D/		-	30.000	06LAY04		980.000 1275.234), (3980.00		
		-					06LAY04				
▷ (3) Trace287		-	Trace1879::DA		_	10.000			980.000 1403.796), (3980.00		
		-	Trace1879::D/			11.204	06LAY04		980.000 1443.796), (3980.00		
	9::DATA_D16 DAT	A_D23	Trace1879::D/	4 9.62		18.562	06LAY04	(3	980.000 1315.234), (3980.00	0 1333.796)	
▷ (2) Trace285	9::DATA_D16 DAT	A_D23	Trace1879::DA	A 9.35		4.766	06LAY04	(3	980.000 1225.234), (3980.00	0 1230.000)	
	9::DATA_D16 DAT	A_D17	Trace2675::DA	A 9.35		5.234	06LAY04	(3	980.000 1230.000), (3980.00	0 1235.234)	
								- 1			
	9::DATA D16 DAT	A D17	Trace2683::D/	A 9.35		10.000	06LAY04	(3	980.000 1265.234), (3980.00	0 1275.234)	

从上面的结果可以看到,部分网络的耦合系数达到9.7%,串扰太大,对信号质量 可能影响会比较大。但这些地方都比较短,比较容易调整,所以可以选择适当放宽等长 规则到±25mil,把间距拉开到9mil,这是可以满足时序,调整也比较小的一种方式, 结果如下图,耦合系数均在5%以下。

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

这种数据让我们在设计的时候,能够清楚的了解到自己板子的实际情况,不需要靠想象去完成板子的修改,也有直观的数据指导修改,修改点清晰明了,对于提升设计效率以及设计的准确性是有很大帮助的。

【关于一博】

- 一博科技成立于 2003 年 3 月,专注于高速 PCB 设计、PCB 制板、SMT 焊接加工和供应 链服务。我司在中国、美国、日本设立研发机构,全球研发工程师 600 余人。
- 一博旗下 PCB 板厂位于深圳松岗,采用来自日本、德国等一流加工设备,TPS 精益生产管理以及品质管控体系的引入,致力为广大客户提供高品质、高多层的制板服务。
- 一博旗下 PCBA 总厂位于深圳,并在上海、成都设立分厂,厂房面积 15000 平米,现有 20 条 SMT 产线,配备全新进口富士 XPF、NXT3、AIMEX III、全自动锡膏印刷机、十温 区回流炉、波峰焊等高端设备,并配有 AOI、XRAY、SPI、智能首件测试仪、全自动分 板机、BGA 返修台、三防漆等设备,专注研发打样、中小批量的 SMT 贴片、组装等服 务。作为国内 SMT 快件厂商,48 小时准交率超过 95%。常备一万余种 YAGEO、MURATA、AVX、KEMET 等全系列阻容以及常用电感、磁珠、连接器、晶振、二三极管,源自原厂或一级代理,现货在库,并提供全 BOM 元器件供应。

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

【关于高速先生】

高速先生由深圳市一博科技有限公司 R&D 技术研究部创办,用浅显易懂的方式讲述高 速设计,成立至今保持每周发布两篇原创技术文章,已和大家分享了百余篇呕心沥血之 作,深受业内专业人士欢迎,是中国高速电路第一自媒体品牌。

扫一扫,即可关注

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

